
Write Optimization of Log-structured Flash File
System for Parallel I/O on Manycore Servers

Chang-Gyu Lee∗ Hyunki Byun∗ Sunghyun Noh, Hyeongu Kang, Youngjae Kim†

Department of Computer Science and Engineering, Sogang University, Seoul, Republic of Korea
{changgyu,bhyunki,nsh0249,hyeongu,youkim}@sogang.ac.kr

ABSTRACT
In Manycore server environment, we observe the perfor-
mance degradation in parallel writes and identify the causes
as follows – (i) When multiple threads write to a single file
simultaneously, the current POSIX-based F2FS file system
does not allow this parallel write even though ranges are
distinct where threads are writing. (ii) The high processing
time of Fsync at file system layer degrades the I/O through-
put as multiple threads call Fsync simultaneously. (iii) The
file system periodically checkpoints to recover from system
crashes. All incoming I/O requests are blocked while the
checkpoint is running, which significantly degrades overall
file system performance. To solve these problems, first, we
propose file systems to employ a fine-grained file-level Range
Lock that allows multiple threads to write on mutually ex-
clusive ranges of files rather than the course-grained inode
mutex lock. Second, we propose NVM Node Logging that
uses NVM as an extended storage space to store file meta-
data and file system metadata at high speed during Fsync
and checkpoint operations. In particular, the NVM Node Log-
ging consists of (i) a fine-grained inode structure to solve the
write amplification problem caused by flushing the file meta-
data in block units and (ii) a Pin Point NAT (Node Address
Table) Update, which can allow flushing only modified NAT
entries. We implemented Range Lock and NVM Node Logging
for F2FS in Linux kernel 4.14.11. Our extensive evaluation
at two different types of servers (single socket 10 cores CPU
server, multi-socket 120 cores NUMA CPU server) shows
significant write throughput improvements in both real and
synthetic workloads.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR ’19, June 3–5, 2019, Haifa, Israel
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6749-3/19/06. . . $15.00
https://doi.org/10.1145/3319647.3325828

CCS CONCEPTS
• Software and its engineering→ File systemsmanage-
ment;

KEYWORDS
Manycore OS, File System, Non-volatile Memory

1 INTRODUCTION
Data-intensive applications such as relational and NoSQL
databases perform parallel I/O for high I/O throughputs [1–
6]. Parallel I/O operations allow multiple threads to read
and write to a single file concurrently, thus increasing the
I/O throughput of applications by exploiting full parallelism
of the underlying storage system. For example, a typical
relational database such as MySQL uses InnoDB engine to
store table data. The InnoDB engine stores a table in a file
using a B+ tree. If the table is a single file, then parallel
I/Os concurrently perform write or update queries on the
same table. In addition, HPC scientific applications perform
periodic checkpointing to resume execution after recovery
in case of failures [7]. In particular, N-to-1 checkpointing
maximizes I/O performance by using parallel I/O, which al-
lows multiple MPI processes to write their own intermediate
results concurrently to a single file on mutually exclusive
regions [8, 9].

Manycore servers have hundreds of cores on a single ma-
chine and provide massive parallelism [10, 11]. With the
advancement in hardware technologies, the application level
parallelism is becoming more prominent. The parallel I/O
of applications running on such servers can expect higher
performance with many computing cores. High performance
database engines are designed to handle queries concurrently
by utilizing this high computational parallelism of the Many-
core server [1, 12–14]. The I/O performance of such applica-
tions highly depends on the parallel write performance of the
storage device. The parallel reads are less susceptible to stor-
age performance because they can benefit from low memory
latency through memory caching. On the other hand, the
processing time of parallel writes is directly affected by the

∗Both authors contributed equally to this work.
†Y. Kim is a corresponding author.

21

https://doi.org/10.1145/3319647.3325828

SYSTOR ’19, June 3–5, 2019, Haifa, Israel C. Lee et al.

performance of hardware storage devices, which is much
slower than main memory.
The most intuitive way to effectively address the per-

formance issues of parallel writes mentioned above is to
use high-performance storage device with high parallelism.
PCIe-based high-performance SSDs use multiple read/write
I/O queues to provide high I/O parallelism and bandwidth
at the same time [15]. However, simply employing a high-
performance SSD does not necessarily improve the parallel
write I/O performance of the application. The application
needs to access the SSD storage device, which is a block
interface, with the help of the file system such as Ext4 [16],
Btrfs [17], F2FS [18] of the OS. Another alternative is to op-
timize I/O middleware such as DB engine or I/O library in
the application. However, in this study, we focus on parallel
write optimizations within the OS file system on which I/O
middleware depends. We reveal that the file system on a
Manycore server can be a bottleneck to prevent I/O perfor-
mance from improving when performing parallel writes.

F2FS [18] is a Linux native file system optimized for SSD.
F2FS employs a log structured design to compensate for
the poor performance of random write patterns in NAND
Flash-based SSDs. However, when multiple threads write
to a single file in parallel, the Linux VFS layer allows multi-
ple writes, but the implementation of the native file system
F2FS does not allow concurrent writes. This is because the
inode mutex lock prevents other writes from accessing the
file even if each write accesses another offset of the file. In
addition, applications such as databases use Fsync system
call to persist file data and file metadata to storage devices.
However, the Fsync system call has a high latency because
it must perform block I/O to send the file data and the file
metadata in memory to the storage device. In addition, F2FS
performs checkpointing when the amount of file data in
memory reaches a certain threshold. However, during F2FS
checkpointing, all write requests are blocked in order to guar-
antee consistency of the file system, resulting in a sudden
drop in file system performance.

This paper has the following contributions:
• When multiple threads execute parallel writes to one file,
they can not be processed simultaneously by the file sys-
tem, even if their writing areas (file offsets) on the file
do not overlap. To allow parallel writes to a single file,
we propose to implement a fine-grained file-level Range
Lock rather than a coarse-grained inode mutex lock in
F2FS, allowing multiple threads to write to different off-
sets in a single file, eventually improving parallel write
performance.

• Fsync is a system call to store file data and file metadata in
storage. The speed of storage greatly affects the latency of
Fsync system calls. Further, frequent Fsync calls cause file

system checkpointing. All incoming write I/Os are blocked
during the checkpointing, resulting in a dramatic drop in
file system I/O performance. For high-speed Fsync call
handling and checkpointing, we propose NVM Node Log-
ging to use Non-volatile Memory (NVM) as an extension
of storage to store file metadata and file system metadata
at high speed.

• When calling Fsync, a write amplification problem may
occur. The SSD is a block device with a single I/O write
unit of 4 KB. If the data contents changed are smaller than
4 KB, then the write bandwidth may be lost due to write
amplification. We take into consideration the characteris-
tics of byte-addressability of NVM, so that only modified
data can be written in NVM area. For this, we propose
a Pin Point NAT Update mechanism, which solves the
problem of wasted bandwidth due to write amplification
from the existing SSD block interface.

• We have implemented both file-level Range Lock and NVM
Node Logging by modifying the F2FS file system for evalua-
tion. Both ideas were implemented on F2FS and evaluated
using 10 cores and 120 cores Manycore servers with both
synthetic and realistic workloads. In particular, in a Many-
core server evaluation of 120 cores, file-level Range Lock
implementation showed a 14.9× performance improve-
ment over native F2FS performance and NVM Node Log-
ging showed a 35.8% increase in throughput over F2FS. In
the Filebench experiment, F2FS, which implemented both
file-level Range Lock and NVM Node Logging, throughput
increased by 9% compared to native F2FS, reducing tail
latency by 71%.

2 BACKGROUND AND MOTIVATION
2.1 SSD Optimized File Systems
NAND Flash-based SSDs offer a number of benefits over
conventional HDDs: improved I/O access time, less power
consumption, better resilience to operating in harsh envi-
ronments with external shocks and hotter temperatures, and
lighter-weight devices. But, NAND Flash memory is unable
to directly overwrite a storage location in the same man-
ner as magnetic media. Once a location has been written,
NAND Flash requires an erase operation before data in that
location can be changed. Further complicating matters, read
and write operations can be performed at a finer granularity
than erase operations. As erase operations are much more
expensive in terms of time than read/write operations, SSDs
incorporate software to allow out-of-place update operations,
which eventually requires a sweep of the storage area to find
stale data and consolidate active pages in order to create
free blocks. This process, known as garbage collection (GC),
can block incoming requests that are mapped to flash chips
currently performing erase operations [19]. The frequency

22

Write Optimization of Log-structured Flash File System for Parallel I/O SYSTOR ’19, June 3–5, 2019, Haifa, Israel

Log Area
File System
Metadata

Inode
NID:3

BLK:101
Data

BLK = 27 BLK = 101Node ID = 3

Node Log Entry Data Log Entry
NID

3
…

BLK
27
…

NAT
… … … … … …

Figure 1: F2FS On-Disk Data Structure for file systemmeta-
data and file data and metadata [18].

and overhead of GC operations are significantly affected by
random writes and updates with small request sizes.

F2FS [18] is a log-structured file system designed to over-
come the aforementioned problems of the NANDFlash-based
SSD. F2FS minimizes the GC overhead by sufficiently utiliz-
ing SSD’s internal parallelism through multi-head logging.
Figure 1 shows on-disk layout of F2FS. F2FS on-disk layout
can be broadly divided into two parts; The data log section
that stores file system metadata and user data, and Node log
section that stores file metadata. F2FS manages inode, direct
node, and indirect node as Node log, and each Node log’s
entry is assigned a node id. F2FS uses Node Address Table
(NAT), which resides in the file system metadata region on
the storage device, to convert the node id to node log entry’s
block address. In Figure 1, a node which has node id 3 can
be accessed with block address 27 via NAT. Consequently,
file metadata conversion also conveys the change in NAT.

F2FS uses checkpointing to ensure file system failure con-
sistency. Specifically, it flushes dirty data and metadata, res-
ident in the memory, and NAT metadata into the storage
device. However, the problem of checkpointing comes from
blocking all incoming write requests during the checkpoint-
ing. Due to this blocking problem, resulting from checkpoint-
ing, file system throughput can drop drastically and latency
increases. The Fsync system call can execute file system
checkpointing. However, F2FS does not perform checkpoint-
ing every time the Fsync is called. Instead, write the changes
to the journal in the Fsync system call. When the journal is
full, the journal contents are synchronized with the storage
device. Database applications perform many Fsync system
calls, which is a major cause of performance degradation.

2.2 Non-Volatile Memory Technology
Non-Volatile Memory (NVM) technologies such as PCM [20]
and STT-MRAM [21] are the state-of-the-art memory tech-
nology which allows DRAM like fast access speed, byte-
addressability, and persistency of storage device [22]. Due to
its characteristics, NVM is used in the research field as high-
speed storage device [23, 24], persistent cache [25], or main
memory extension for persistent data structures [22, 26].
However, it is necessary to support transactional updates
for consistency guarantee while managing persistent data
in NVM. However, there exist several challenges in sup-
porting transactional updates. First, due to the CPU cache,

changes on NVM data may not instantly updated. This prob-
lem results in performance overhead from instructions like
clflush for every NVM update. Secondly, NVM failure atomic
write size is restricted to 8 bytes. Thus, it cannot guaran-
tee atomicity if an update larger than 8 bytes occurs. This
problem can be resolved by implementing commit mecha-
nisms [23, 24, 26], or applying Intel TSX Extension [27], but
it incurs additional performance overhead. Lastly, there are
write ordering problems for sequential updates. It happens
due to CPU’s memory write instruction reordering. This can
be solved by using memory fence instruction such asmfence,
which constrains memory update reordering [22, 26].

3 DESIGN AND IMPLEMENTATION
3.1 Design Goals
The design goals of this study for parallel I/O write support
in F2FS are:
• Support parallel writes to a single file. In a data in-
tensive application such as DBMS, parallel reads for a
single file are effectively handled by allowing concurrent
accesses to the page cache. However, parallel writes for a
single file are not concurrently processed. Linux VFS layer
can process parallel writes for a single file simultaneously,
but, parallel write requests to the same file are serialized
by the file system. This is because a file system such as
F2FS, Ext4, XFS, ZFS, and Btrfs can only process one write
request at a time for a single file using inode mutex [28].
Thus, it should be able to perform multiple writes to a
single file in order to effectively process parallel I/Os for a
single file. We achieve this goal by adopting Range Lock in-
stead of inode mutex when it processes the write request
to a file.

• Reduce Fsync latency. The Fsync system call is used
to persist data that has been written so far. In particular,
database applications periodically call Fsync to provide
application level consistency. For example, database appli-
cations can ensure that transactions are stored safely in a
storage device only with Fsync . This prevents data loss
that may occur in case of a power failure. In Manycore
server environments, as the number of cores grows, more
I/O transactions with Fsync calls occur more frequently.
In such an environment where Fsync is more frequently
called, the latency of Fsync determines the transaction pro-
cessing performance of the entire application. Therefore,
it is necessary to minimize the latency of Fsync while pro-
cessing the above-mentioned parallel writes. We achieve
this goal by adopting small non-volatile memory (NVM)
that provides byte-addressability, persistency, and low ac-
cess memory latency as an extended storage space to disk
to save file metadata and file system metadata.

23

SYSTOR ’19, June 3–5, 2019, Haifa, Israel C. Lee et al.

• Remove I/O blocking on periodic checkpointing. In
F2FS, checkpointing is a process for flushing modified file
data, file metadata, and file systemmetadata frommemory
to disk to recover from system or power failures. When
Fsync is called, it checks if 60 seconds have elapsed since
the last checkpoint, and if 60 seconds have passed, it trig-
gers a checkpointing. However, during checkpointing, all
normal I/O write operations that try to change node logs
of the file system including file creation are blocked. Thus,
I/O throughput of applications can dramatically drop dur-
ing the checkpointing process. In addition, checkpointing
flushes all dirty data in memory other than the file called
by Fsync. This increases the I/O checkpointing blocking
time, further degrading the application I/O throughput.
Therefore, I/O delay time that occurs when checkpoint-
ing is called should be minimized. We mitigate this I/O
blocking problem when using checkpointing by moving
file system metadata and file metadata to NVM.
To address the aforementioned issues, we propose file-level
Range Lock and NVM Node Logging, which are explained
in detail in the following sections.

3.2 File-level Range Lock
POSIX-based native file systems such as Ext4, XFS, and F2FS
serialize parallel writes to the same file. Currently, the native
file systems process only one write at a time using the inode
mutex in the write operation even though each thread writes
to a different area of the file. However, this incurs a huge
overhead when processing a large number of writes to the
same file.
Simply removing the inode mutex lock from the write

operation path in the file system is not desirable because
it may lead to data inconsistency as multiple threads will
modify data in the overlapping ranges simultaneously. On
the other hand, the POSIX write ordering constraint will be
violated. POSIX requirements on write I/Os are written as
the followings in [29].

After a write() to a regular file has successfully returned,

(1) Any successful read() from each byte position in the file
that was modified by that write shall return the data
specified by the write() for that position until such byte
positions are again modified.

(2) Any subsequent successful write() to the same byte posi-
tion in the file shall overwrite that file data.

In order to meet these requirements, we propose to use
a file-level Range Lock in F2FS that allows running parallel
writes to a single file rather than an inode mutex lock. The
file-level Range Lock is able to atomically acquire a lock for
only the range of the file to be written. It does not block
writes to areas other than the blocks currently being written,

TA TB TCThread
Inode

BlockedLock (0,1) Lock (2,3)
Lock (4,3)

File

Figure 2: File access using Range Lock. Each box of the file
represents a data block.

which eventually increases write parallelism when multiple
writes are performed on the same file. A write is blocked
only when a new write is generated in the range currently
being written, thus data consistency can be maintained.
Figure 2 shows an example of how parallel writes are

performed using Range Lock. Suppose there are three threads,
named ThreadA (TA), ThreadB (TB), and ThreadC (TC). Each
thread runs with the following order: TA first writes a file,
then, TB , and then TC wants to write the file. And TB does
not end before TC tries to write the file. In this situation, the
operating mechanisms of thread A, B, and C are as follows.
(1) TA starts write operation on the first block of the file.

Because there are no other threads which perform
write I/O on the first block, TA acquires a lock and
performs its task.

(2) TB starts write operation on the blocks from third to
fifth of the file. As there are no overlapping blocks for
TB , it acquires the lock and performs its operation.

(3) TC starts write operation on the blocks from fifth to
seventh of the file. As TC performs write operation on
the overlapping block with TB , it is blocked until the
overlapped blocks are unlocked.

Applying Range Lock allows parallelizing write opera-
tions while preserving the POSIX ordering constraints. First,
POSIX constraint suggests the need for read and write order-
ing when overlapping between them is present. This require-
ment must be met in order to perform parallel read-write
operations. However, removing inode mutex lock for paral-
lel writes does not preserve the POSIX read-write operation
sequence constraint. On the other hand, Range Lock will only
acquire a lock for the particular blocks on which the thread
will performwrite I/O. In order to increase parallelism, Range
Lock also supports parallel reads. Read operations for blocks
that do not overlap with blocks of write operations can be
executed simultaneously unlike the inode mutex lock.
Second, POSIX constraint suggests that if two write I/Os

perform on overlapping blocks then only one should be al-
lowed to write on the overlapped blocks. Therefore, multiple
writes to the overlapping blocks should be serialized. If mul-
tiple writes are permitted by simply removing the inode
mutex lock, write-write serialization may also not be pre-
served. However, in the Range Lock, write I/Os are to be

24

Write Optimization of Log-structured Flash File System for Parallel I/O SYSTOR ’19, June 3–5, 2019, Haifa, Israel

Node 3

A

A

NID LBA
3 27
··· ···

inode
101
···

NID LBA
3 27
··· ···

inode
101

DRAM
NVM

SSD

NAT f2fs_inode
Data

NAT
Node Log

Data Log

LBA 27

21 3

IO
Reference
Update

(a) Read process using fine-grained inode

Node 3

A

A

NID LBA
3 28
··· ···

inode
101
102

NID LBA
3 28

B

B

Node 3’

DRAM
NVM

SSD

inode

102
101

···NAT
f2fs_inode Data

NAT
Node Log

Data Log

LBA 27 28

2 13

(b) Write process using fine-grained inode
Figure 3: Read and write operation process using a fine-grained inode structure.

serialized if there is an overlapping range of blocks in those
two write I/Os.
POSIX-based native file systems perform concurrent

writes sequentially by using the inode mutex lock. There-
fore, modification of metadata such as inode is only done by
one write operation at a time, and it is consistent. However,
if parallel I/O is allowed for a single file, changes to metadata
are also made in parallel, which means that the consistency
of parallel updates of metadata should be considered. The
metadata for F2FS includes NAT, segment information and
inode. The NAT manages the mapping between node id
and physical location of the node block as shown in Figure 1.
F2FS flushes NAT inmemorywhen Fsync is called. Therefore,
changing the order in which multiple threads write to the
same file in the in-memory does not affect NAT’s consistency.
F2FS manages blocks in segments (consecutive blocks). The
segment information uses a bitmap to manage the validity
of each of the blocks within the segment. Parallel writes
using Range Lock allows to have mutually exclusive ranges
in the file. Because each thread enters a critical section using
the Range Lock, more than one thread can not modify the
same bit in a valid bitmap at the same time. Therefore, the
consistency of segment information due to parallel writing
to a single file is not a problem. Inode consists of infor-
mation related to a file pointers to the block addresses of
the data. When updating the file metadata, the file system
uses the inode mutex lock and maintains inode consistency.
When updating pointers to data in the file, it has to acquire
a Range Lock, thus it can also keep the inode consistency.
Range Lock can be applied to file systems that have inode
locking problems that occur when multiple threads write to
a single file.

3.3 NVM Node Logging
Fsync system call ensures data consistency in case of fail-
ures and applications periodically trigger Fsync to protect
data. Even if parallel writes can increase an overall I/O per-
formance, Fsync can greatly degrade the I/O performance.
Thus, reducing Fsync latency is critical. NVM Node Logging

mitigates high latency issues in Fsync and attempts to reduce
I/O blocking time during checkpointing in aManycore server
environment. This can be accomplished by placing file meta-
data log (Node log) and file system metadata such as NAT on
small NVM. In the NVM Node Logging approach, only Node
log and file system metadata are stored in NVM, and data log
is stored in the SSD because our goal of this study is to use
small NVM to minimize the performance overhead by Fsync
and checkpointing operations. With NVM, Fsync latency can
decrease as it is a write operation on NVM rather than on
the SSD block device. Besides, NAT is stored in NVM, thus
reducing performance degradation during checkpointing.

Figure 3 shows the read and write procedure using Node
log on NVM. The read operation is as follows. First, read a
Node log entry via NAT on NVM. Second, identify an LBA
corresponding to data in the Node log entry. Lastly, read
data block from SSD using LBA. In the case of data write,
the data log is firstly stored on an SSD to ensure file system
consistency. When Fsync is called, the Node is flushed to
the NVM’s node log. Then, when the checkpoint starts, all
Nodes that are not yet flushed to the NVM are flushed with
the NAT. At this moment, just using memcpy to store data
on NVM does not guarantee consistency. clflush is vital to
make sure the flush procedure is completed from the cache to
memory. Also, to prevent re-ordering while flushing, mfence
instruction is required.

NVM can be used as a write-back cache [25] or as a jour-
naling device [24, 30]. In the NVM Node Logging, NVM is
used as storage only for file and file system metadata. There-
fore, if NVM capacity is sufficient, existing data or metadata
caching approaches can be applied orthogonally with NVM
Node Logging.

3.4 Fine-grained Inode
F2FS is made for block device where a basic writing unit
is 4KB. File metadata, such as inode, direct node and indi-
rect node, is designed to fit a 4KB size. Figure 4(a) shows
a traditional inode structure in F2FS. The inode structure
consists of inode information from the VFS layer, address

25

SYSTOR ’19, June 3–5, 2019, Haifa, Israel C. Lee et al.

Inode

Block Address
…

NID

4KB

(a) Baseline inode

Inode

Block Address
NID

0.4KB

(b) Fine-grained inode

Figure 4: Comparing the inode structure of existing
F2FS and fine-grained inode structure.

space to indicate data blocks, and NID for node information.
If a file is small, the inode only needs direct pointers to the
data block. On the other hand, if the file is large, it also uses
indirect pointers. However, since the inode is 4KB, it has both
direct pointers and indirect pointers regardless of file size.
In NVM Node Logging, the node is located in NVM. Due to
the byte-addressability of NVM, the inode does not need to
be sized to 4KB. The size of the inode structure can be small.
We call this inode structure a fine-grained inode structure.
Figure 4(b) shows the fine-grained inode structure which
allocates only required amount of NVM. Fsync forces I/O on
a block size even though the changed portion is much less
than the block size, which can cause a write amplification
problem. This write amplification is critical in NVM in terms
of NVM’s lifetime limitation.
However, adopting NVM Node Logging allows access to

the NVM in bytes, so that only a portion of the inode struc-
ture can be modified. Therefore, the problem of write am-
plification due to block sized I/Os can be solved. By using
a fine-grained inode structure, the size of the inode which
needs to be persisted is decreased by 90%, compared to a
traditional block size inode structure.

3.5 Pin Point NAT Update
As mentioned earlier, checkpointing is called every 60 sec-
onds. Once checkpointing is called, the entire NAT is flushed.
This also causes write amplification problems by flushing un-
necessary data to disk. The Pin Point NAT Update solves the
write amplification problem by flushing only the modified
NAT entries to NVM when Fsync is invoked.
Figure 5(a) shows how existing F2FS updates and flushes

NAT when the NAT is in the SSD. In F2FS, the block address
of an entry in NAT is updated when the node log entry is
flushed. And when checkpointing is performed, the entire
NAT is flushed to the SSD in NAT blocks even though only
some of the NAT entries need to be updated. Suppose that
the inode of NID 3 is modified in Figure 5(a). When Fsync is
called, the modified inode will be appended at a new block
in the Node log on the SSD. And the corresponding entry
(LBA) in the NAT in memory is updated to reflect this new
NID-to-LBA mapping entry change. When the checkpoint-
ing is called, the entire NAT is flushed. On the other hand,

NID LBA
3 28… …

Inode’
NID: 3

NID LBA
3 27… …

Inode
NID: 3

NATDRAM

SSD

NAT Node Log

Inode’
NID: 3

LBA 27 28

NID LBA
3 28… …

Inode’
NID: 3

NID LBA
3 27… …

Inode
NID: 3

NAT

NAT Node Log

Inode’
NID: 3

LBA 27 28

CheckpointingFSYNC

(a) Baseline approach to flush inode and NAT
FSYNC

NID LBA
3 28… …

Inode’
NID: 3

NID LBA
3 28… …

Inode
NID: 3

NATDRAM

NVM

NAT Node Log

Inode’
NID: 3

LBA 27 28

(b) Pin Point NAT Update to flush inode and NAT

Figure 5: Procedure for Fsync and checkpointing in base-
line and procedure for Fsync only in Pin Point NAT Update.

Figure 5(b) illustrates the Pin Point NAT Update procedure
where both the node log entry and modified NAT items are
flushed to NVM when Fsync is called, thereby minimizing
the overhead of flushing the entire NAT to disk and reducing
the latency of Fsync. The Pin Point NAT Update guarantees
the atomicity of the flushed data because the size of the NAT
entry is smaller than the cache line size.
NVM Node Logging including Fine-grained Inode and Pin

Point NAT Update can also reduce the mapping table flush
overhead of file system metadata in other log-based file sys-
tems.

4 EVALUATION
4.1 Experimental Setup
For a fair comparison, we configured two different scales
of Manycore testbeds. Table 1 and Table 2 show the detail
hardware specification of each testbed.

Workloads: Synthetic workload and realistic workload both
were used in the evaluation. We use FxMark [28] for Syn-
thetic workload. FxMark is the benchmark that can evaluate
I/O performance in Manycore environments, and is able to
test performance scalability for various synthetic workload
patterns by varying CPU core numbers. FxMark can create
many different workload patterns. Especially, DWOM and
DWSL workloads were used in our evaluation. DWOM is a
workload that multiple threads write 4KB to different offsets
of a single file. DWSL is a workload that multiple threads
write 4KB to their own files and each thread calls Fsync
for every 4KB write. We consider both Buffered I/O and Di-
rect I/O configurations for DWOM in order to observe the
performance difference between using page cache or not.
For realistic workloads, we use Filebench [31] which is

the file system benchmark, and TPC-C [32] with MySQL
5.7 [3]. OLTP and Varmail are used as workloads in Filebench.

26

Write Optimization of Log-structured Flash File System for Parallel I/O SYSTOR ’19, June 3–5, 2019, Haifa, Israel

Table 1: Configurations for Testbed-I.
Intel Xeon E5-2640 v4 2.4GHz [33]

CPU CPU Node (#): 1
Cores per Node (#): 10

RAM 64GB
SSD Samsung SSD 850 PRO 256GB (SATA) [34]

Read: 550 MB/s, Write: 520 MB/s
NVM 32GB Emulated as PMEM device on RAM
OS Linux kernel 4.14.11

Table 2: Configurations for Testbed-II.
Intel Xeon E7-8870 v2 2.3GHz [35]

CPU CPU Node (#): 8
Cores per Node (#): 15

RAM 740GB
SSD Intel SSD 750 Series 400GB (NVMe) [36]

Read: 2200 MB/s, Write: 900 MB/s
NVM 32GB Emulated as PMEM device on RAM
OS Linux kernel 4.14.11

Table 3: OLTP configuration parameters.

ndbwriters nshadow nfiles runtime
Testbed-I 16 4 1 60secTestbed-II 80 40

Table 4: Varmail configuration parameters.

nfiles nthreads iosize mean runtime
Testbed-I 10000 20 1MB 1MB 60secTestbed-II 120

Filebench OLTP mimics I/O patterns in DBMS. In Filebench
OLTP, one thread writes log and other threads process I/Os
for DB files. Varmail OLTP is the workload that imitates I/O
pattern of a simple mail server. Varmail OLTP consists of mul-
tiple threads processing create-append-sync, read-append-
sync, and read-delete operations. Table 3 and Table 4 show
the parameter settings in OLTP and Varmail workloads. TPC-
C benchmark usesMySQL, thus it can check the performance
of real database application.

We evaluate F2FS write performance with Range Lock im-
plementation for parallel write optimization and NVM Node
Logging. Our evaluation will answer the following questions.

• What are the performance bottlenecks in F2FS with
parallel write scenarios?

• How is the performance improved when multiple
threads write to a single file compared to baseline
F2FS?

• How is the efficiency and performance trend improved
with NVM Node Logging?

• How optimized F2FS will behave in real workloads?
• When does the disk become a bottleneck, besides file
system?

Emulating NVM Device: A part of the contiguous space of
the DRAM is set as the NVM area and registered as a device
through the PMEM driver. The NVM area is accessed via

direct access (DAX) and memcpy is used to read/write at the
virtual address of NVM.

For evaluations, we compare different implementations as
below.

• F2FS(Baseline): F2FS included in Linux kernel.
• F2FS(RL): F2FS with Range Lock mechanism.
• F2FS(NL): F2FS with NVM Node Logging mechanism.
• F2FS(Integrated): F2FS with both Range Lock and NVM
Node Logging mechanisms.

4.2 Evaluating Scalability for Various
Workload Patterns

4.2.1 Experiment with a single CPU node based Manycore
server. To verify our proposed design, we measure scalabil-
ity using DWOM and DWSL workloads of FxMark with
Testbed-I. Figure 6(a) shows the throughput of DWOMwork-
load with Buffered I/O varying number of cores. Throughput
of F2FS(RL) and F2FS(Integrated) increase 41% compared to
Baseline in all cases after 2 cores. Because of Range Lock,
multiple threads can write into a single file simultaneously
in F2FS(RL) and F2FS(Integrated). F2FS(NL) performs simi-
larly with Baseline because it uses inode mutex as Baseline
does. There is no benefit to using NVM Node Logging be-
cause there is no Fsync call in DWOM. When only one core
is enabled, both F2FS(RL) and F2FS(Integrated) show lower
throughput than Baseline. Also because of the higher man-
agement overhead of Range Lock compared to inode mutex,
throughput decreases when there is no parallel writes. Due
to the management cost of Range Lock, throughput does not
scale as number of cores increase.
Figure 6(b) shows the throughput of DWOM workload

with Direct I/O varying number of cores. Throughput of
F2FS(RL) and F2FS(Integrated) increases 2.7 times compared
to Baseline. Because Direct I/O enforces to access to SSD
device which is slower than page cache access, performance
improvement by Range Lock is clearly shown and Range Lock
management overhead is hidden by higher device access
latency. Because the SSD device’ is saturated, throughput
does not scale after 6 cores.

Figure 6(c) shows throughput of DWSL workload varying
number of cores. In F2FS(NL) and F2FS(Integrated), Node log
I/Os occurred by Fsync are performed on NVM, which re-
duces Fsync latency while increasing throughput. F2FS(NL)
and F2FS(Integrated) show 39.6 times performance improve-
ment compared to Baseline. Because in DWSL workload,
multiple threads write their own private files, Range Lock
can not improve throughput. As shown in DWOM, through-
put does not scale after 6 cores due to device bandwidth
saturation.
4.2.2 Analysis Latency of Range Lock & NVM Node Log-
ging. Figure 7(a) shows CDF of write latency in DWOM for

27

SYSTOR ’19, June 3–5, 2019, Haifa, Israel C. Lee et al.

1 2 4 6 8 10
of Cores

0.0

0.5

1.0

1.5

2.0

2.5

M
 IO

PS

(a) DWOM (Buffered I/O)

1 2 4 6 8 10
of Cores

0

20

40

60

80

100

K
IO

PS

Device Maximum IOPS

(b) DWOM (Direct I/O)

1 2 4 6 8 10
of Cores

0

20

40

60

80

100

K
IO

PS

Baseline
Range Lock

Node Logging
Integrated

(c) DWSL (Buffered I/O)

Figure 6: Performance comparison of various synthetic workloads (DWOM, DWSL) with Testbed-I.

(a) CDF for Write latency on DWOM (b) CDF for Fsync latency on DWSL (c) CDF for Checkpoint latency on DWSL

Figure 7: Write, Fsync, and Checkpoint latency comparison of F2FS-RN with Testbed-I.

1 15 28 42 56 70 84 98 112
120

of Cores

0

200

400

600

800

1000

1200

K
IO

PS

(a) DWOM (Buffered I/O)

1 15 28 42 56 70 84 98 112
120

of Cores

0

50

100

150

200

250

K
IO

PS

Device Maximum IOPS

(b) DWOM (Direct I/O)

1 15 28 42 56 70 84 98 112
120

of Cores

0

50

100

150

200

250

K
IO

PS

Baseline
Range Lock

Node Logging
Integrated

(c) DWSL (Buffered I/O)

Figure 8: Performance comparison of various synthetic workloads (DWOM, DWSL) with Testbed-II.

Baseline and F2FS(Integrated). In case of Baseline, tail la-
tency is quite long due to inode mutex bottleneck. While
F2FS(Integrated) shows lower tail latency since Range Lock
allows multiple threads to write on a single file. Figure 7(b)
shows CDF of Fsync latency in DWSL for Baseline and
F2FS(Integrated). NVM Node Logging mechanism performs
metadata I/O from Fsync quite rapidly, and shows reduced
tail latency. Figure 7(c) shows checkpoint latency of Baseline
and F2FS(Integrated) in DWSL. F2FS(Integrated) reduces I/O
in checkpointing by Pin Point NAT Update, and reduced tail
latency can be observed.

4.2.3 Experiment with a NUMA node-based Manycore server.
Figure 8(a)(b) shows throughput of FxMark DWOM with re-
spect to increasing number of cores in Testbed-II. Figure 8(a)
shows experiment results for DWOM that uses Buffered
I/O. Its result coincided with the results of Testbed-I. With

7 cores, throughput of F2FS(RL) and F2FS(Integrated) im-
proved 44% compared to Baseline, but did not show improve-
ment in most cases. Figure 8(b) shows experiment result of
DWOM that uses Direct I/O. Throughput of F2FS(RL) and
F2FS(Integrated) improved up to 14.9% compared to Base-
line. However, maximum throughput was shown in 15 cores,
and when more cores were used, throughput declined in-
stead. This graph only shows IOPS value of data. However,
4KB of extra operation occurs since change in inode is fol-
lowed by data modification. Hence, including this, it can be
shown that IOPS reaches SSD device max bandwidth when
15 cores are used. However, as number of cores increases,
more I/O needs to be taken care of while device cannot per-
form higher than maximum bandwidth. It can be presumed
that performance decreases due to SSD’s internal queuing
delay. Figure 8(c) shows throughput of DWSL in FxMark,

28

Write Optimization of Log-structured Flash File System for Parallel I/O SYSTOR ’19, June 3–5, 2019, Haifa, Israel

Table 5: OLTP results on Testbed-I.

OLTP Baseline Range Lock Node Logging Integrated
Total ops/s 20082 33004 102084 102209
Write ops/s 11985 19692 60891 60966
Read ops/s 7975 13113 40572 40622

dbwrite
Latency

Avg 0.003 0.003 0.002 0.001
Max 39.9 39.9 35.7 39.1

Table 6: Varmail results on Testbed-I.

Varmail Baseline Range Lock Node Logging Integrated
Total ops/s 4703.9 4647.0 5493.1 5506.2
fsync ops/s 362 357.5 422.5 423.5
fsync

Latency
Avg 26.5 26.6 22.3 22.3
Max 118.6 154.2 115.2 96.4

Table 7: OLTP results on Testbed-II.

OLTP Baseline Range Lock Node Logging Integrated
Total ops/s 328546 313570 327300 331497
Write ops/s 22950 23875 24543 25057
Read ops/s 305275 289370 302421 306098

dbwrite
Latency

Avg 0.01 0.01 0.01 0.01
Max 187.5 111.7 199.8 55.8

Table 8: Varmail results on Testbed-II.

Varmail Baseline Range Lock Node Logging Integrated
Total ops/s 8056.2 7898.6 7780.9 8007.3
fsync ops/s 619.5 607.5 598.5 615.5
fsync

Latency
Avg 91.4 93.7 95.2 91.9
Max 337.6 338.3 311.9 315.5

with respect to number of cores. Like Testbed-I, it can be
confirmed that throughput increases from Fsync latency
improvement through NVM Node Logging in F2FS(NL) and
F2FS(Integrated). F2FS(NL) and F2FS(Integrated) improved
up to 35.8% compared to Baseline. However, throughput of
F2FS(Integrated) is lower than that of F2FS(NL) due to the
overhead of Range Lock management.

4.3 Evaluating Scalability for Realistic
Workloads

Table 5 provides experimental results for OLTP workload in
Filebenchwith Testbed-I. The DBwrite throughput increased
by approximately 64% with F2FS(RL) compared to Baseline.
This is because, Range Lock allows multiple threads to access
a single DB file simultaneously. As the write throughput
of DB files increased, the read throughput of DB files also
increased proportionally. F2FS(NL) throughput increased
up to 5× compared to the Baseline. OLTP workloads use
dsync mode to perform writes. F2FS calls Fsync on every
write. Significant performance improvements in F2FS (NL)
are due to a large number of these Fsync calls in theworkload.
In F2FS(Integrated), Range Lock made a slight increase in
throughput. But, overall throughput is almost the same as
F2FS(NL) because the throughput increase by NVM Node
Logging is dominant compared to Range Lock.
Table 6 shows the experimental results for Var-

mail in Filebench in Testbed-I. Compared to Baseline,

0

4

8

12

16

20

K
Tp

m
C

Baseline Range Lock

(a) Testbed-I
0
5

10
15
20
25
30

K
Tp

m
C

Node Logging Integrated

(b) Testbed-II
Figure 9: Performance comparison of various F2FS opti-
mizations for TPC-C.

F2FS(Integrated) showed about 16% increase in throughput.
In Table 6, the average latency of F2FS(NL) Fsync decreased
by 19% and the maximum latency decreased by up to 10%.
Therefore, the latency reduction of Fsync due to NVM Node
Logging was confirmed. On the other hand, since there is no
task that multiple threads writing a file simultaneously, we
can not see performance improvement through Range Lock.

Table 7 shows the experiment results for Filebench OLTP
in Testbed-II. Unlike Testbed-I, overall throughput improve-
ment was not seen when compared to Baseline. Looking
at the throughput of the DB-write alone, F2FS(RL) showed
a performance improvement of approximately 4% over the
Baseline through Range Lock, but there was no increase in
overall throughput due to reads which do not show improve-
ment taking up the majority of total I/Os. Also, the maximum
latency of DB-write in F2FS(RL) is reduced by 41%. F2FS(NL)
also showed no difference in overall throughput compared
to Baseline, but DB-write throughput increased by about
6%. No improvement in maximum latency was observed in
F2FS(NL). F2FS(Integrated) also showed similar throughput
to Baseline. DB-write showed 9% throughput increase and
tail latency decrease by 71% compared to Baseline. Range
Lock has solved the problem of write serialization, showing
the improvement of DB-write performance and reducing the
tail latency.
Table 8 shows the experimental results for Varmail in

Filebench in Testbed-II. Unlike the results in Testbed-I,
F2FS(RL), F2FS(NL) and F2FS(Integrated) showed similar
throughput with the Baseline. Rather, the throughput is
slightly lowered in F2FS(NL). Because Varmail has operations
other than write and Fsync, such as file creation, read, and
removal, we can not see throughput improvement through
the proposed methods in Testbed-II, which uses SSDs fast
enough. In addition, the minimum latency and maximum
latency of F2FS(NL) and F2FS(Integrated) using NVM Node
Logging are slightly lowered. However, there is no significant
difference in overall latency and the latency of the F2FS(NL)
is slightly higher resulting in lower throughput.

Figure 9(a) shows the TpmC change for TPC-C in Testbed-I.
At F2FS(NL) and F2FS(Integrated), the throughput improved
by approximately 22% compared to the Baseline. On the
other hand, F2FS(RL) shows similar throughput as Baseline.

29

SYSTOR ’19, June 3–5, 2019, Haifa, Israel C. Lee et al.

Because TPC-C is a benchmark using actual MySQL, it pro-
cesses queries through the database and stores the results in
a log file. Data stored in the logs is stored in a DB file through
background I/O. Testbed-I is not a highly compute-intensive
environment because it has only 10 cores. Therefore, com-
pute for query processing at the DBMS and I/O for storing
logs are prominent and background I/O is not noticeable.
The performance improvements in these situations cannot
be expected because Range Lock is the optimization of shared
writes that occur when log is written to a DB file.

Figure 9(b) shows the results of the experiment on TPC-
C in Testbed-II. F2FS(RL) has not resulted in throughput
improvements for TPC-C workloads, such as in Testbed-
I. Unlike Testbed-I, the performance of F2FS(NL) and
F2FS(Integrated) slightly decreases. TPC-C is a highly
SELECT-intensive workload with read I/O, and it is suspected
that the DBMS is producing I/O that can be adequately han-
dled by high performance storage device. As a result, we
couldn’t see any improvement in throughput through the
techniques proposed in this paper.
Through the results of micro and macro benchmark in

Testbed-II, Range Lock and NVM Node Logging techniques
proposed in this paper were found to be suitable for a highly
write intensive workload. Like micro benchmark, which is-
sues a lot of write operations, performance improvements
were seen well. However, in hardware resource-rich systems
with write-less workload, performance improvements could
not be seen. Moreover, the performance decreased slightly.

5 RELATEDWORK
Lock Optimizations: I/O performance optimizations of the
application using parallel I/O have been exploited in HPC
and distributed computing systems [8, 9, 37, 38]. Particularly,
range lock has been introduced to minimize delays and wait-
ing time in parallel I/O scenarios [39, 40]. Thakur et al. [39]
proposed a Byte-Range Locking scheme on a file system
layer to optimize multiple write operations while ensuring
atomicity semantics for non-contiguous file accesses in high-
performance MPI-IO ROMIO. Bennett et al. [40] proposed
another Byte-Range Locking scheme that changes the level
according to the complexity of locking in a client-server envi-
ronment. Parallel distributed file systems such as Lustre [41]
and Gluster [42] are equipped with range lock to speed-up
parallel I/Os while maintaining the consistency semantics.
Both studies parallelize the I/Os of several threads simulta-
neously accessing a file by using the range lock technique
and preserve file consistency. However, most POSIX-based
native file systems use inode mutex when writing files, so
they cannot fully attain parallelism in parallel I/O cases. In
this paper, we extend the range locking method used in HPC
and distributed computing systems to the native file system
to improve write performance of the parallel I/O.

Fsync Optimizations: Several existing approaches such as
optimization at journaling and on storage backends tried
to overcome Fsync performance degradation [30, 43, 44].
iJournaling [43] proposed transaction processing on a file-
by-file basis to solve the performance degradation caused by
compound transaction processing that occurs when Fsync
is called from the journaling file system. However, iJour-
naling still has high overhead with increasing number of
transactions to process when Fsync is called on multiple
files. RFLUSH [44] proposed a new instruction to improve
the lump-sum problem of storing all the data in the buffer
inside the storage device when the Flush command is ex-
ecuted. The RFLUSH instruction is a fine-grained FLUSH
instruction that stores only the data for the file called Fsync
in the internal buffer of the storage device. So, it can reduce
unnecessary data storage and utilize caching due to buffering
for other data. Existing studies are either journaling level or
device level Fsync optimizations. In this paper, we propose
the file system level optimization, which makes additional
I/O caused by Fsync to be fast with NVM. Our work is or-
thogonal with device level Fsync optimization like RFLUSH.

Write Optimizations: There exist several studies to improve
I/O performance of the file system using NVM [24, 25, 30].
UBJ [30] integrates the page cache and journal area on NVM.
It reduces the memory copy and space overhead for jour-
naling. Tinca [25] proposed a technique to use NVM as a
block cache layer. Fine-grained Metadata Journaling [24]
proposed a technique to use non-volatile memory as journal
area. It solves the write amplification problem by writing
the journal to the necessary part in bytes utilizing the byte-
addressability of non-volatile memory. ScaleFS [45] proposed
a per-core operation log to address low file system scalabil-
ity due to cache-line conflict problems when updating in-
memory copies of directory blocks. The cache-line conflict
problem was solved by logging the directory changes to the
per-core log and merging them in a delayed way using global
timestamps.

6 CONCLUSION
We identified the cause of the performance bottleneck in
F2FS for parallel I/O workloads on Manycore servers, which
are manifolded: First, in F2FS, when multiple threads write
on a file, F2FS serializes them so even if each thread writes
on different region of the file, one has to wait until another
finishes. Second, when many threads call writes followed by
Fsync, file metadata (inode) and file system metadata (NAT)
flush operations can burden file system performance. In order
to solve these problems, we propose to implement Range
Lock and NVM Node Logging using small NVM in F2FS. With
extensive evaluations on theManycore servers, wewitnessed
significant improvements in F2FS’s write performance for
write-intensive and high shared file write workloads.

30

Write Optimization of Log-structured Flash File System for Parallel I/O SYSTOR ’19, June 3–5, 2019, Haifa, Israel

ACKNOWLEDGMENTS
We thank the reviewers and our shepherd, Anirudh Badam
for their constructive comments that have significantly im-
proved the paper. This work was supported by Institute for
Information & communications Technology Promotion(IITP)
grant funded by the Korea government(MSIT) (No. 2014-0-
00035, Research onHigh Performance and ScalableManycore
Operating System).

REFERENCES
[1] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi, “Shore-

MT: A Scalable Storage Manager for the Multicore era,” in Proceedings
of the 12th International Conference on Extending Database Technology
(EDBT), 2009, pp. 24–35.

[2] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and C. A. Lang,
“SSD Bufferpool Extensions for Database Systems,” Proceedings of the
VLDB Endowment, vol. 3, no. 1-2, pp. 1435–1446, 2010.

[3] MySQL. [Online]. Available: https://www.mysql.com/
[4] SQLite. [Online]. Available: https://www.sqlite.org/
[5] RocksDB. [Online]. Available: https://rocksdb.org/
[6] LevelDB. [Online]. Available: http://leveldb.org/
[7] Bouteiller, Lemarinier, Krawezik, and Capello, “Coordinated check-

point versus message log for fault tolerant MPI,” in Proceedings of the
2003 IEEE International Conference on Cluster Computing (CLUSTER),
2003, pp. 242–250.

[8] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham,
A. Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF: A High-
Performance Scientific I/O Interface,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2003, pp. 39–48.

[9] Y. Yu, D. H. Rudd, Z. Lan, N. Y. Gnedin, A. Kravtsov, and J. Wu, “Im-
proving Parallel IO Performance of Cell-based AMR Cosmology Ap-
plications,” in Proceedings of the 26th IEEE International Conference on
Parallel & Distributed Processing Symposium (IPDPS), 2012, pp. 933–944.

[10] L. Dagum and R. Menon, “OpenMP: An Industry Standard API for
Shared-Memory Programming,” IEEE Computational Science and Engi-
neering, vol. 5, no. 1, pp. 46–55, 1998.

[11] M. Si, A. J. Peña, P. Balaji, M. Takagi, and Y. Ishikawa, “MT-MPI: Mul-
tithreaded MPI for Many-Core Environments,” in Proceedings of the
28th ACM International Conference on Supercomputing (ICS), 2014, pp.
125–134.

[12] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker, “Star-
ing into the Abyss: An Evaluation of Concurrency Control with One
Thousand Cores,” Proceedings of the VLDB Endowment, vol. 8, no. 3, pp.
209–220, 2014.

[13] X. Yu, A. Pavlo, D. Sanchez, and S. Devadas, “TicToc: Time Traveling
Optimistic Concurrency Control,” in Proceedings of the 2016 ACM SIG-
MOD International Conference on Management of Data (SIGMOD), 2016,
pp. 1629–1642.

[14] H. Kimura, “FOEDUS: OLTP Engine for a Thousand Cores and
NVRAM,” in Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD), 2015, pp. 691–706.

[15] Performance Benchmarking for PCIe and NVMe Enterprise Solid
State Drive. [Online]. Available: https://www.intel.com/content/
dam/www/public/us/en/documents/white-papers/performance-
pcie-nvme-enterprise-ssds-white-paper.pdf

[16] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier,
“The new ext4 filesystem: Current status and future plans,” in Proceed-
ings of the 2007 Linux Symposium, 2007, pp. 21–33.

[17] O. Rodeh, J. Bacik, and C.Mason, “BTRFS: The Linux B-Tree Filesystem,”
Trans. Storage, vol. 9, no. 3, pp. 9:1–9:32, 2013.

[18] C. Lee, D. Sim, J. Y. Hwang, and S. Cho, “F2FS: A New File System for
Flash Storage,” in Proceedings of the 13th USENIX Conference on File
and Storage Technologies (FAST), 2015, pp. 273–286.

[19] S. Yan, H. Li, M. Hao, M. H. Tong, S. Sundararaman, A. A. Chien, and
H. S. Gunawi, “Tiny-Tail Flash: Near-Perfect Elimination of Garbage
Collection Tail Latencies in NAND SSDs,” ACM Transactions on Storage
(TOS), vol. 13, no. 3, p. 22, 2017.

[20] M. J. Breitwisch, “Phase Change Memory,” in Proceedings of the 2008
International Interconnect Technology Conference (ITTC), 2008, pp. 219–
221.

[21] T. Kawahara, “Scalable Spin-Transfer Torque RAM Technology for
Normally-Off Computing,” IEEE Design & Test of Computers, vol. 28,
no. 1, pp. 52–63, 2011.

[22] T. David, A. Dragojević, R. Guerraoui, and I. Zablotchi, “Log-Free Con-
current Data Structures,” in Proceedings of the 2018 USENIX Conference
on Usenix Annual Technical Conference (ATC), 2018, pp. 373–386.

[23] J. Xu and S. Swanson, “NOVA: A Log-structured File System for Hy-
brid Volatile/Non-volatile Main Memories,” in Proceedings of the 14th
USENIX Conference on File and Storage Technologies (FAST), 2016, pp.
323–338.

[24] C. Chen, J. Yang, Q. Wei, C. Wang, and M. Xue, “Fine-grained metadata
journaling on NVM,” in Proceedings of the 32nd IEEE Symposium on
Mass Storage Systems and Technologies (MSST), 2016, pp. 1–13.

[25] Q. Wei, C. Wang, C. Chen, Y. Yang, J. Yang, and M. Xue, “Transac-
tional NVM Cache with High Performance and Crash Consistency,” in
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), 2017, pp. 56:1–56:12.

[26] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh, “WORT: Write
Optimal Radix Tree for Persistent Memory Storage Systems,” in Pro-
ceedings of the 15th USENIX Conference on File and Storage Technologies
(FAST), 2017, pp. 257–270.

[27] Intel Transactional Synchronization Extensions (Intel TSX) Overview.
[Online]. Available: https://software.intel.com/en-us/cpp-compiler-
developer-guide-and-reference-intel-transactional-synchronization-
extensions-intel-tsx-overview

[28] C. Min, S. Kashyap, S. Maass, and T. Kim, “Understanding Manycore
Scalability of File Systems,” in Proceedings of the 2016 USENIX Confer-
ence on Usenix Annual Technical Conference (ATC), 2016, pp. 71–85.

[29] The Open Group Technical Standard Base Specifications, Issue
7 - POSIX.1-2017. [Online]. Available: http://pubs.opengroup.org/
onlinepubs/9699919799/

[30] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the Buffer Cache and
Journaling Layers with Non-volatile Memory,” in Proceedings of the
11th USENIX conference on File and Storage Technologies (FAST), 2013,
pp. 73–80.

[31] Filebench Benchmark. [Online]. Available: https://github.com/
filebench/filebench

[32] TPC-C Benchmark. [Online]. Available: https://github.com/Percona-
Lab/tpcc-mysql

[33] Intel Xeon Processor E5-2640 v4. [Online]. Available: https://
ark.intel.com/products/92984

[34] Samsung 850 PRO Series SSD. [Online]. Avail-
able: https://www.samsung.com/us/business/support/owners/
product/850-pro-series-256gb/

[35] Intel Xeon Processor E7-8870 v2. [Online]. Avail-
able: https://ark.intel.com/products/75255/Intel-Xeon-Processor-E7-
8870-v2-30M-Cache-2-30-GHz-

[36] Intel SSD 750 SERIES. [Online]. Available: https://www.intel.com/
content/www/us/en/products/memory-storage/solid-state-drives/
gaming-enthusiast-ssds/750-series/750-400gb-aic-20nm.html

31

https://www.mysql.com/
https://www.sqlite.org/
https://rocksdb.org/
http://leveldb.org/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-pcie-nvme-enterprise-ssds-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-pcie-nvme-enterprise-ssds-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-pcie-nvme-enterprise-ssds-white-paper.pdf
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-intel-transactional-synchronization-extensions-intel-tsx-overview
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-intel-transactional-synchronization-extensions-intel-tsx-overview
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-intel-transactional-synchronization-extensions-intel-tsx-overview
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://github.com/Percona-Lab/tpcc-mysql
https://github.com/Percona-Lab/tpcc-mysql
https://ark.intel.com/products/92984
https://ark.intel.com/products/92984
https://www.samsung.com/us/business/support/owners/product/850-pro-series-256gb/
https://www.samsung.com/us/business/support/owners/product/850-pro-series-256gb/
https://ark.intel.com/products/75255/Intel-Xeon-Processor-E7-8870-v2-30M-Cache-2-30-GHz-
https://ark.intel.com/products/75255/Intel-Xeon-Processor-E7-8870-v2-30M-Cache-2-30-GHz-
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/750-series/750-400gb-aic-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/750-series/750-400gb-aic-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/750-series/750-400gb-aic-20nm.html

SYSTOR ’19, June 3–5, 2019, Haifa, Israel C. Lee et al.

[37] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate, “PLFS: A Checkpoint Filesystem for Parallel
Applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2009,
pp. 21:1–21:12.

[38] Infinite Memory Engine (IME). [Online]. Available: https:
//www.ddn.com/products/ime-flash-native-data-cache/

[39] R. Thakur, W. Gropp, and E. Lusk, “On Implementing MPI-IO Portably
and with High Performance,” in Proceedings of the 6th ACM Workshop
on I/O in Parallel and Distributed Systems (IOPADS), 1999, pp. 23–32.

[40] R. B. Bennett, B. P. Dixon, and E. Johnson, “Byte Range Locking in A
Distributed Environment,” Sep. 21 1999, US Patent 5,956,712.

[41] P. Schwan et al., “Lustre: Building a File System for 1000-node Clusters,”
in Proceedings of the 2003 Linux symposium, 2003, pp. 380–386.

[42] The Gluster File System. [Online]. Available: http://www.gluster.org/
[43] D. Park and D. Shin, “iJournaling: Fine-Grained Journaling for Im-

proving the Latency of Fsync System Call,” in Proceedings of the 2017
USENIX Conference on Usenix Annual Technical Conference (ATC), 2017,
pp. 787–798.

[44] J. Yeon, M. Jeong, S. Lee, and E. Lee, “RFLUSH: Rethink the Flush,” in
Proceedings of the 16th USENIX Conference on File and Storage Tech-
nologies (FAST), 2018, pp. 201–210.

[45] S. S. Bhat, R. Eqbal, A. T. Clements, M. F. Kaashoek, and N. Zeldovich,
“Scaling a file system to many cores using an operation log,” in Pro-
ceedings of the 26th ACM Symposium on Operating Systems Principles
(SOSP), 2017, pp. 69–86.

32

https://www.ddn.com/products/ime-flash-native-data-cache/
https://www.ddn.com/products/ime-flash-native-data-cache/
http://www.gluster.org/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 SSD Optimized File Systems
	2.2 Non-Volatile Memory Technology

	3 Design and Implementation
	3.1 Design Goals
	3.2 File-level Range Lock
	3.3 NVM Node Logging
	3.4 Fine-grained Inode
	3.5 Pin Point NAT Update

	4 Evaluation
	4.1 Experimental Setup
	4.2 Evaluating Scalability for Various Workload Patterns
	4.3 Evaluating Scalability for Realistic Workloads

	5 Related Work
	6 Conclusion
	References

