
Received January 4, 2021, accepted January 15, 2021, date of publication January 27, 2021, date of current version February 11, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3054905

Parallelizing Shared File I/O Operations of NVM
File System for Manycore Servers
JUNE-HYUNG KIM , YOUNGJAE KIM , (Member, IEEE), SAFDAR JAMIL ,
CHANG-GYU LEE , AND SUNGYONG PARK , (Member, IEEE)
Department of Computer Science and Engineering, Sogang University, Seoul 04107, South Korea

Corresponding author: Sungyong Park (parksy@sogang.ac.kr)

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government(MSIT) (No. 2014-0-00035, Research on High Performance and Scalable Manycore Operating System).

ABSTRACT NOVA, a state-of-the-art non-volatile memory (NVM) file system, has limited performance
due to its coarse-grained per-file lock when multiple threads perform I/Os to a shared file in a manycore
environment. For instance, a writer lock blocks other threads attempting to access the same file, although they
access different regions of a file. When multiple threads reading the same file share a cache line containing a
reader counter, performance can be significantly degraded due to cache consistency protocol as we increase
the number of readers. This paper proposes a fine-grained segment-based range lock (SRL) that divides a
file into multiple segments and manages a lock variable dynamically for each segment. Consequently, write
operations can be parallelized without blocking unless there is a conflict in accessing the same range in a file.
Moreover, SRL maintains a reader counter per segment that allows multiple reader threads to perform read
operations without causing a performance bottleneck. We evaluated an SRL-based NOVA on an Intel Optane
DC persistent memory (PM) manycore server. The benchmarking results showed that the average write
throughput of the SRL-based NOVA is 3× higher than the original NOVA, and the average read throughput
scales linearly, while the original NOVA does not scale.

INDEX TERMS Operating system, file system, non-volatile memory, manycore CPU.

I. INTRODUCTION
In the last decade, distinct non-volatile memory (NVM)
devices, such as phase-change memory (PCM) [1], resistive
memory (ReRAM) [2] and 3D-Xpoint [3], have been studied
and commercialized for various applications. Also, various
NVM-based file system studies have been conducted while
considering these NVM devices as primary storage [4]–[13].
These studies exploited the characteristics of NVM devices
such as byte-addressability, low latency, and persistency,
to provide high throughput and data consistency. Among
these file systems, NOVA [4] is a state-of-the-art NVM-based
file system that ensures the consistency of data and metadata
in the event of power outage through its log-structured design.
NOVA implements per-inode logging for metadata and uses
per-core data structures such as inode table, journaling space,
and memory allocator to boost performance by supporting
concurrent I/Os [14].

However, we identified that NOVA does not fully exploit
the scalability of I/O throughput whenmultiple I/Os are being

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

performed to a shared file in a manycore environment. The
major performance bottleneck is due to the coarse-grained
per-file lock [15], [16], which negates the benefit of par-
allelism and high-performance NVM devices. Moreover,
NOVA uses a counter-based readers-writer (RW) lock that
allows multiple threads to read concurrently from a file while
only one thread can write. This becomes another cause of
performance bottleneck when the modification of a single
shared RW lock variable invalidates the CPU cache lines of
other read threads.

To mitigate the aforementioned problems, we have modi-
fied NOVA so that it adopts Linux’s interval tree-based range
lock [17], referred to as range lock. The interval tree is a
well-known data structure for detecting overlapping ranges.
The range lock first performs range checking for the I/Os
before acquiring the locks. If ranges do not overlap, read and
write operations can be performed, otherwise write opera-
tions are blocked. As the range lock controls read/write access
to a range rather than a file, it is apparent that NOVA using
a range lock should provide higher scalability in terms of
I/O throughput than NOVA using a counter-based RW lock.
However, we reported in our previous work [18] that the

24570 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-8485-0130
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0002-9011-6431
https://orcid.org/0000-0003-3299-5367
https://orcid.org/0000-0002-0309-1820
https://orcid.org/0000-0001-9987-5584

J.-H. Kim et al.: Parallelizing Shared File I/O Operations of NVM File System for Manycore Servers

NOVA using a range lock still does not scale for shared file
I/Os as we increase the number of cores. This is because
the current range lock implementation protects the entire tree
with amutex lock when inserting or deleting nodes in the tree.
Therefore, many I/O threads have to compete for the mutex
lock to access the interval tree on a manycore server, which
serializes access and thus severely degrades I/O performance.
Considering that the read/write latency of NVM is quite low,
the software overhead caused by this lock contention along
the I/O path has a significant impact on the execution time of
read or write operations.

In addition, we proposed a fine-grained segment-based
range lock (SRL) and apply it to NOVA to improve the scala-
bility of shared file I/Os on manycore servers. SRL divides a
file into fixed-size segments, where a segment is a contiguous
set of pages in a file, and an RW lock is associated with each
segment. In SRL, when read/write threads check overlapping
ranges, they do not need to acquire an additional lock to
protect the entire tree. The threads only check the segments
corresponding to the I/O ranges to determine whether read-
/write operations can be performed. Thus, SRLminimizes the
serialization problem caused by range checking in the inter-
val tree-based range locks. With SRL, when threads access
segments, they run on their own CPU cores with their own
RW lock variables. Thus, SRL can mitigate the performance
degradation caused by the overhead from frequent CPU cache
line invalidation.
SRL dynamically allocates an RW lock variable for each

segment to efficiently utilize memory as the static allocation
of all RW lock variables may result in inefficient usage of
memory. For instance, if multiple threads read or write a
small portion of a large file, it is a waste of memory space
to keep the RW lock variables for all segments in memory. In
order to dynamically manage RW lock variables, we adopted
a radix tree where each leaf node represents an RW lock
variable for each segment and the file offset is used as a key. In
this case, a thread can lookup for its corresponding segment
lock variable with its file offset through the radix tree, which
allows multiple threads to access the tree concurrently.

On the other hand, when SRLs are employed in NOVA,
the consistency problem attributed to NOVA’s log-structured
logging can occur. For example, when multiple threads
attempt to write to a log concurrently by competing for a
single log pointer, file system consistency can be damaged if
it is not carefully managed. For this, we introduced a commit
mark-based logging mechanism to ensure file system consis-
tency. At the end of each write operation, NOVA commits
the log entries by putting a commit mark on the entry along
with the memory fence and cache line flush commands. In the
recovery phase, only entries with commit marks become
recoverable candidates. This commit mark-based logging
mechanism safely completes the transactions from simulta-
neous multiple writers and makes the file system consistent
after power failure.

We evaluated the scalability of SRL-based NOVA using
FxMark [15] on a manycore server with 56 cores and Intel

Optane DC persistent memory (PM)modules. In experiments
using a shared file write workload, the write throughput of
SRL-based NOVA is up to 3× higher than that of original
NOVA and 28% higher than that of NOVA with the interval
tree-based range lock. On the other hand, with a shared file
read workload, the SRL-based NOVA scales linearly as the
number of cores increases, while both original NOVA and
NOVA with the interval tree-based range lock do not scale.

The contributions of this work are summarized as follows.

• We identified the scalability problem of shared file I/O in
NOVA on manycore servers. In particular, we observed
that there is a tree lock contention issue with the interval
tree-based range locks.

• We proposed a fine-grained segment-based range lock
calledSRL that dynamically allocates RW lock variables
for the segments to reduce the memory overhead.

• We proposed a commit mark-based logging mechanism
to solve the file consistency problem caused by NOVA’s
log-structured logging.

• We modified NOVA by including various range
locks and the commit mark-based logging mechanism.
We also provided extensive evaluation results on amany-
core machine with 56 CPU cores and Intel Optane DC
PM modules, and showed that the SRL-based NOVA
outperformed other NOVA versions.

II. BACKGROUND AND MOTIVATION
A. THE NOVA FILE SYSTEM
NOVA [4] is a state-of-the-art log-structured NVM-based
file system. NOVA guarantees consistency of the file system
using per-inode logging in NVM, where each log records
every modification made to the files or directories. Specif-
ically, NOVA uses the copy-on-write (COW) technique to
update the file data where it first writes user data to newly
allocated data pages and updates the pointer that points to the
new data pages later. Figure 1 shows the operational behavior
of NOVA and the core data structures such as index tree, inode
structure, and per-inode log. NOVA maintains an index tree
in DRAM for each file and uses it to retrieve the data pages
corresponding to the file offset of a read or write operation.
Each file has a 128 B inode in NVM, which includes head
and tail pointers to the start and end of the log entries stored
in the inode log. The inode log is a series of 4 KB log pages
where the size of each log entry is 64 B and the user data is
stored in 4 KB data pages. The log pages and data pages are
allocated in NVM by a per-CPU memory page allocator.

Figure 1 also illustrates the read and write operations flow
in NOVA. As shown in Figure 1(a), if a user wants to write
data in the range of 6KB-14KBof a file, NOVAfirst allocates
three new data pages as the unit of write operation is 4 KB
page. It then copies the data (Data1, Data2, and Data3) to
the newly allocated data pages by overwriting the user’s data
in the intended range of the data pages 1©. After the data
pages are completely written, the corresponding log entry is
appended to the inode log. The tail pointer in an inode points

VOLUME 9, 2021 24571

J.-H. Kim et al.: Parallelizing Shared File I/O Operations of NVM File System for Manycore Servers

FIGURE 1. Write and read I/O flows in NOVA file system [4].

to the latest committed log entry and thus the new log entry
is written right after the tail pointer. If the tail pointer points
to the last log entry in a log page, a new log page is allocated
and the log entry is written at the start of the new log page 2©.
Then, the tail pointer is updated to reflect the position of the
new log entry 3©. Finally, the index tree in DRAM is updated
so that the new index node points to the new log entry 4©, and
NOVA’s atomic write operation is finished.

The read operation in NOVA is relatively simple compared
to the write operation. Figure 1(b) depicts the overall flow
of the NOVA’s read operation right after the write opera-
tion described above. When a read operation is initiated,
NOVA first locates log entries corresponding to the range of
read operation from the index tree 1©. Since NOVA’s write
operation is atomic, the log entries found in the index tree
point to the updated data pages. Thus, NOVA copies the data
page to the user buffer and finishes the read operation 2©.
On the other hand, in the event of a sudden crash or power
failure, NOVA can recover an inconsistent file into a consis-
tent state by scanning the inode log. Beginning at the head
pointer stored in the inode, all log entries are scanned until it
reaches the position where the tail pointer is pointing. As a
result, this scanning process can correctly reconstruct the
file index tree and enables the recovery of an inconsistent
file.

Thewrite operation is atomic in the sense that the operation
is either completely executed or not executed at all in the
event of a crash or power failure. Therefore, if a crash occurs
after user data is written without appending a log entry to the
inode log, this operation is not visible because no log entry
points to the user data. Even if a system crashes after writing
a log entry but before updating the tail pointer, the operation
is not also visible, since the log is located after the tail pointer
and is excluded from the scanning process. The last case
is when a system crashes after updating the tail pointer but
before updating the index tree. In this case, because the log
entry is pointed by the tail pointer, the scanning process
includes the log entry, followed by an index tree update to
that log entry. Therefore, users can access the newest data
from the index tree, which means that the write operation is
performed correctly.

B. MOTIVATION
In this section, we illustrate NOVA’s scalability problems for
shared I/Os and provide insights into a proposed solution by
analyzing the experimental results of NOVA’s scalability in a
manycore environment.

1) SHARED FILE WRITER-WRITER PROBLEM
This problem occurs when multiple threads write to a shared
file concurrently. The coarse-grained RW lock per file used
in NOVA serializes writers, even if users write in different
regions of a file. As shown in Figure 1(a), a NOVA write
operation consists of the following four steps:

1) Data Write: Copy user data from user buffer to data
pages.

2) Logging: Write a log entry containing information
about a write operation in the inode log.

3) Tail Update: Update the tail pointer with a new log
entry.

4) Tree Update: Update the index tree to point to the new
log entry.

Figure 2(a) shows why a bottleneck occurs if four threads
(W1, W2, W3, W4) write data to the same file simultane-
ously. In the current implementation, NOVA sets all the
above steps as one large critical section. Therefore, a thread
entering the critical section acquires a lock on a file by
calling down_write() to prevent other threads from enter-
ing the critical section. After the thread completes the four
steps, it exits the critical section by calling up_write() to
release the lock. For example, W1-W4 in Figure 2(a) can
possibly execute the Data Write steps at the same time
since they write data to different ranges of a file. However,
in the current NOVA, once W1 is in the critical section,
all other threads should wait for W1 to complete all four
steps.

2) SHARED FILE READER-READER PROBLEM
A NOVA read operation, as shown in Figure 1(b), performs
the following two steps:

1) Tree Lookup: Lookup log entries from the index tree
corresponding to the range of the read operation.

24572 VOLUME 9, 2021

J.-H. Kim et al.: Parallelizing Shared File I/O Operations of NVM File System for Manycore Servers

FIGURE 2. Pipeline procedure of concurrent shared file I/O operations in NOVA.

2) Data Copy: Copy user data from data pages to the user
buffer.

Multiple threads can read data pages concurrently because
it is not necessary to read data pages in a critical section.
Figure 2(b) shows an examplewhere four threads (R1, R2, R3,
and R4) attempt to read from the same file simultaneously.
However, NOVA uses the Linux RW lock and there is only
one reader counter per file. NOVA first increases the reader
counter before performing a read operation.WhenNOVAfin-
ishes the read operation, it decreases the reader counter. The
update operation on the reader counter can be a bottleneck in
the manycore servers if a large number of threads read from
the shared file at the same time. This is because of the cache
line invalidation overhead when multiple threads update a
shared reader counter in the manycore servers.

3) SHARED FILE WRITER-READER PROBLEM
The NOVA per-file lock is implemented using the RW lock
based on the reader counter mentioned above. That is, writers
have to wait unless the reader counter is zero. Figure 2(c)
shows an example where three reader threads (R1, R3, R4)
and one writer thread (W2) execute their corresponding oper-
ations concurrently. In this case, two reader threads (R3, R4)
have towait while awriter thread (W2) is in the critical section
because of the coarse-grained lock of a write operation.

4) SCALABILITY ANALYSIS FOR SHARED FILE I/OS IN NOVA
We evaluate the scalability of NOVA on the 56-core server
with Intel Optane DC PM modules. We used the FxMark
benchmark [15] to measure the bandwidth of NOVA for
the following three workloads. The experimental setup is
explained in detail in Section V.
• Shared file write: each I/O thread only writes to the
non-overlapping range of a shared file.

• Shared file read: each I/O thread reads only the
non-overlapping range of a shared file.

• Shared file mix: each I/O thread reads or writes to the
non-overlapping range of a shared file. The ratio of read
threads to write threads is 50:50.

Figure 3 shows the results of scalability measurement of
NOVA as we increase the number of I/O threads for the
three workloads mentioned above. In these experiments, each

I/O thread is pinned to a single core to minimize the thread
scheduling overhead. Therefore, the number of threads in this
paper is equal to the number of cores. Read/write sizes are
set to 4KB. In Figure 3(a), we observed that the performance
of NOVA does not scale at all as we increase the number of
cores. Overall, the write throughput is under 1 GB/s regard-
less of the number of cores. This is due to the shared file
writer-writer problem. The coarse-grained RW lock per file
only allows a single thread to perform awrite operation which
serializes all the threads and concurrency among threads
becomes impossible.

In Figure 3(b), we can see that the read throughput
increases rapidly and reaches up to 45.5 GB/s on 8 cores.
This is due to the CPU cache effect. In the shared file read
workload, each thread repeatedly reads 4 KB pages. Thus,
each operation can gain performance benefits from CPU
cache hits. However, the throughput decreases after 8 cores.
We conjecture that this is because the single shared reader
counter becomes a performance bottleneck as discussed in
the shared file reader-reader problem. The RW lock using
a reader counter per file uses lock-free atomic operations to
increase or decrease the reader counter. However, if many
readers simultaneously modify the reader counter, the CPU
hardware eventually serializes these accesses to the reader
counter to maintain the correct value [19]. Also, the update
operations on the reader counter invalidate the cache lines
corresponding to the reader counter in other waiting threads
and lock holders, which eventually degrades the overall
throughput [20].

Figure 3(c) shows the results of using a shared file mixed
workload. Similar to the results with the shared file write
workload (i.e., 100% write), the performance of NOVA does
not scale as we increase the number of cores. The measured
throughput is under 1 GB/s regardless of the number of cores.
This is because the total I/O throughput can be limited by the
write throughput as explained in the shared file writer-reader
problem.

For Figure 3, we ran a CPU analysis study. We found that
the main reason for NOVA’s non-scalable performance is the
lack of available CPU cycles: when all of the CPU cores were
used for I/O, the spinning operation to acquire the lock took
about 95% of total CPU usage.

VOLUME 9, 2021 24573

J.-H. Kim et al.: Parallelizing Shared File I/O Operations of NVM File System for Manycore Servers

FIGURE 3. Results of scalability measurement of NOVA file system as the number of cores performing I/O to shared files is increased.

FIGURE 4. Example of interval tree and its operations for a file.

III. RANGE-BASED READERS-WRITER LOCK
The range-based RW lock selectively blocks I/O opera-
tions only if the overlapping ranges with a lock holder are
accessed [21]. The interval tree-based range lock [17] is a
range-based RW lock implementation for Linux that is dis-
tributed in the form of a Linux kernel patch. In this section,
we explore the limitations of applying the interval tree-based
range lock to the NOVA file system.

A. INTERVAL TREE-BASED RANGE LOCK
An interval tree is a well-known data structure that allows
us to efficiently check whether any range from multiple I/Os
overlap with a given interval. Figure 4 illustrates an interval
tree and its operations for a file. As shown in Figure 4, a node
in the tree contains information that represents the start and
end of an interval. A node is inserted into the tree with its start
value as a key for sorting. While being inserted, it executes an
in-order traversal algorithm to find all overlapping intervals.
The number of overlapping intervals found in this traversal
is stored in the variable num_blockings of the inserted node.
In the range-based locking mechanism, each interval is repre-
sented as a node in the interval tree. Since the RW lock allows
reading of overlapping ranges between I/O threads, the reader
checks the overlapping range only for the writer’s node when
inserting the tree node. For this, there is a flag on the tree node
to distinguish whether it is a writer’s node or not.

The process of inserting or deleting nodes in the inter-
val tree is protected by a single mutex lock. For example,
in Figure 4, assume that there are three range lock holders
(A, B and D with num_blockings zero) and one range lock
waiter (C with non-zero num_blockings). Also assume that a
writer (E) with range [18, 22] is trying to acquire the range
lock. To acquire the range lock, E locks the tree by holding

mutex and finds all overlapping intervals by traversing the
tree. Then, E stores the number of overlapping nodes to
num_blockings. If num_blockings is zero, since it means that
there is no overlapping lock holder, E adds itself to the node,
releases the mutex and acquires the range lock. Otherwise,
E cannot acquire the range lock since there is an overlapping
lock holder(s). Therefore, E adds itself to the node, releases
the mutex and blocks. Later, E is woken up when there is no
overlapping lock holder.

B. APPLYING INTERVAL TREE-BASED RANGE LOCK IN
NOVA
Figure 5 illustrates pipelining procedures of concurrent
shared file I/Os in NOVA when the interval tree-based
range lock is applied to NOVA. Figure 5(a) shows a case
where multiple threads write to a shared file. As explained
in Figure 2(a), all write steps are in the critical section and
a writer can proceed only when its prior thread has finished
the critical section. However, when range locking is applied,
the large critical section can be divided into four smaller
critical sections and all four threads can execute different
steps in the pipeline.

As shown in Figure 5(a), the writer first performs Range
Check 1© to acquire a range lock. If there is no thread access-
ing the file range of the writer, the writer can perform the
subsequent steps without waiting. Note that a node denoting
the file range is to be inserted or deleted in the interval
tree during range checking, and these operations must be
protected via a mutex lock. Therefore, Range Check 1© is
a critical section. However, Data Write 2© is not a critical
section. Thanks to NOVA’s per-core NVM page allocator,
NVM pages can be allocated for each thread, and writes can
be performed on the pages allocated independently. The next
step is Logging 3©, which is also a critical section. Even if
writers append log entries to index different data pages, they
must be serialized to determine the written position in the
log page. Tail Update 4© and Tree Update 5© must also be
protected by locks to guarantee the metadata consistency. As
a result, steps 3©, 4© and 5© are protected with different lock
variables using the spinlock in the Linux kernel.

Figure 5(a) shows when four threads (W1, W2, W3, W4)
race to write to a file. Unlike the case in Figure 2(a), even
though the ranges of W1 and W2 do not overlap, W2 has to

24574 VOLUME 9, 2021

J.-H. Kim et al.: Parallelizing Shared File I/O Operations of NVM File System for Manycore Servers

FIGURE 5. Pipelining procedure of concurrent shared file I/Os in NOVA with interval tree-based range.

wait forW1 to finish all the steps. However,W2 does not have
to waitW1 to finish all the steps here, and it can execute when
W1 finishes the range checking step. If the ranges overlap,
threads will be serialized by the range lock. For instance,
as W2 and W3 have overlapping write ranges, W3 must wait
until W2 finishes all the steps.

Figure 5(b) shows when four threads (R1, R2, R3, R4) read
from a shared file. Readers also first perform theRange Check
¶, which is a critical section. If there is nowriter in that range,
readers can read the range of the file by adding the range node
to the tree. Steps · and ¸ are lock-free; thus, all four threads
can execute these steps in parallel.

Figure 5(c) shows when one writer (W2) and three read-
ers (R1, R3, R4) attempt to write to and read from a file,
respectively, at the same time. Unless the writer overlaps with
the ranges of the readers, the writer no longer serializes the
readers and vice versa. Thus, unlike the case in Figure 2(c),
W2 can run in parallel with R1, R3, and R4.

C. SCALABILITY LIMITATION
The global lock used in the process of inserting nodes into
or deleting them from an interval tree limits the scalability of
NOVA on a manycore server. The reasons for this scalability
limitation include the following:

First, the range checking step in the interval tree-based
range lock where one single global lock is used for the entire
tree becomes a bottleneck. When the interval tree-based
range lock is used with existing block device (HDD and
SSD) based file systems, the range checking process may
not be a bottleneck because the speed of the storage media
is relatively slow. However, in NVM, where the media is
much faster and provides lower latency than HDD and
SSD, the range checking step can largely affect the overall
performance.

Second, readers with an interval tree-based range lock
have to use a mutex lock on the tree. That is, while one
reader checks the range of the interval tree, the other readers
must wait, as shown in Figure 5(b). However, in the case of
conventional NOVA, as shown in Figure 2(b), all readers can
run in parallel. As a result, NOVAwith the interval tree-based
range lock shows relatively low parallelism due to the tree’s
mutex lock. Also, the competition for lock variables of mutex

locks causes frequent cache line invalidation and coherence
traffic, which is another factor in scalability limitation.

We have confirmed the two limitations in Section VI. In
the next section, we describe a fine-grained range lock using
hardware atomic operations to solve these limitations.

IV. FINE-GRAINED SEGMENT-BASED RANGE LOCK
A. SEGMENT LOCK VARIABLES AND MANAGEMENT
SRL is a fine-grained range lock, where each segment, a con-
tiguous set of data pages, is managed by an RW lock. The
segment size is amultiple of the 4KB page size. Each segment
is assigned a 32-bit RW lock variable (slv). The left-most bit
of slv is used for a writer lock. That is, if the segment is being
written, this bit is 1 and otherwise the bit is 0. The remaining
31 bits are reserved for a reader counter, which represents
the number of active readers for the segment. Suppose that a
writer accesses a segment (S) of a file. It first checks the slv
of S. If the left-most bit of the slv is 1, it has to wait because
another thread is currently writing to the segment S. If the
left-most bit of the slv is 0, it changes the bit to 1 using an
atomic operation. Readers can be executed in parallel if there
is no writer to S (i.e. the left-most bit of slv is 0). In this case,
readers increase the reader counter using atomic operations.
So, SRL can perform the Range Check step 1© of the interval
tree-based range lock in Figure 5 as lock-free. Other metadata
operations in steps 3©, 4© and 5© are still protected by locks.

We implemented SRL using a radix tree to manage slvs
dynamically during execution. We call it SRL(tree). Figure 6
illustrates the design of SRL(tree). The radix tree is one of the
well-known fast in-memory indexing data structures included
in the Linux kernel. The internal nodes of the tree only contain
an array of 2n child pointers, while the slvs are pointed by leaf
nodes. When a new file is created, the root node of the tree
is created. Internal nodes and leaf nodes (slv) of the tree are
dynamically allocated.

Figure 7 illustrates how to find the index of the corre-
sponding slv for a file operation. It should be noted that the
segment size, tree level, and index values are all configurable
parameters. Suppose that the maximum file size provided by
the file system is 1.5 TB, which is the maximum size of the
PM disk partition in our Testbed (refer to Section V). Since

VOLUME 9, 2021 24575

J.-H. Kim et al.: Parallelizing Shared File I/O Operations of NVM File System for Manycore Servers

FIGURE 6. Description of the radix tree-based lock management for
SRL(tree).

FIGURE 7. Translation of the file offset to find slv for the lock variable.
Example of calculating the index of slv from the file offset accessed by
the I/O thread.

the address space of 1.5 TB (≈ 241 bytes) can be represented
by 41 bits, not all 64 bits for the file offset are used as an
index. Considering that the segment size is 4 KB and slv is
allocated per segment, the right-most 12 bits of the file offset
are not used as an index and the other 29 bits are used for
the slv index. In this example, the level of the tree is set to 5.
Thus, for multi-level indexing, 6, 6, 6, 6, and 5 bits are used
as index values for each level, respectively.

The pseudo-code for the operations of SRL(tree) is shown
in Algorithm 1. The SRL(tree) operations have two steps.
First, the slv corresponding to the file offset is located by
indexing. SRL(tree) converts the file offset into index values
to find the slv (line 10), which is shown in Figure 7. When
traversing the tree from the root node to the leaf node using
these index values, if the tree’s internal node and slv are not
allocated, they are dynamically allocated and inserted into
the tree (lines 23∼38). Unlike the interval tree-based range
lock, the insertion process of SRL(tree) does not use a mutex
lock. Instead, it uses the function atomic_cmpxchg, which
is a hardware atomic operation. The function changes the
pointer of the array to the address of a newly allocated node
only when the pointer is NULL. Since only one thread can
update the pointer, the problem that multiple threads may
change the pointer at the same time is avoided. The tree nodes
and slv are de-allocated only when the file is closed. The
de-allocation operation is performed only when the thread is
the last user of the file by checking the number of processes
opening the file. Meanwhile, an I/O operation can generally
request multiple consecutive segments and lock them all
together. For this, we slightly modified the radix tree so that
it has leaf nodes connected in a linked-list fashion. We only
need to do it once at the beginning of the tree search, since

1 t y p e d e f s t r u c t {
2 a t om i c _ t ∗ s l v [max] ;
3 }SLVs
4

5 t y p e d e f s t r u c t {
6 i n t i ndex [dep th] ;
7 }PATH
8

9 vo id acqu i r ing_SRL (inode , o f f s e t , l en , w r i t e) {
10 PATH pa t h = t r a n s l a t i o n _ o f f s e t _ t o _ p a t h (o f f s e t) ;
11 SLVs t a r g e t _ s l v s = s e a r c h i n g _ t r e e (inode , pa th , l e n

) ;
12 i f (w r i t e)
13 t r y _ t o _ a c q u i r e _w r i t e r _ l o c k (t a r g e t _ s l v s) ;
14 e l s e
15 t r y _ t o _ a c q u i r e _ r e a d e r s _ l o c k (t a r g e t _ s l v s) ;
16 }
17

18 SLVs s e a r c h i n g _ t r e e (inode , pa th , l e n) {
19 s t r u c t t r e e _ nod e ∗ cu r = inode . SRL_root ;
20 a t om i c _ t ∗ c u r _ s l v ;
21 SLVs c o r r e s p o n d i n g _ s l v s ;
22 /∗ T r a v e r s i n g t r e e t h r ough pa t h and f i n d i n g

c o r r e s p o n d i n g s l v . ∗ /
23 f o r (l e v e l =0 ; l e v e l < dep th ; l e v e l ++) {
24 c h i l d = pa t h . i ndex [l e v e l] ;
25 whi l e (cu r . a r r [c h i l d] == NULL) {
26 /∗ i f t h e node or s l v was no t a l l o c a t e d

∗ /
27 new_node= a l l o c a t e _n ew_node () ;
28 /∗ or a l l o c a t e _ n ew_ s l v () ∗ /
29 o ld=atomic_cmpxchg (& cu r . a r r [c h i l d] ,
30 NULL, new_node

) ;
31 i f (o l d != NULL) /∗ i f f a i l e d t o change ∗ /
32 f r e e _nod e (new_node) ;
33 /∗ or f r e e _ s l v (new_node) ∗ /
34 }
35 i f (cu r . s t a t e == l e a f _ n od e)
36 c u r _ s l v = cu r . a r r [c h i l d] ;
37 e l s e
38 cu r = cu r . a r r [c h i l d] ;
39 }
40 /∗ Ca l c u l a t e t h e number o f segment s t o f i nd ,
41 i . e . t h e number o f s l v s , v i a l e n . ∗ /
42 f o r (n =0; n< numbe r _o f _ c o r r e s pond i n g_ s l v s ; n++) {
43 c o r r e s p o n d i n g _ s l v s [n]= c u r _ s l v ;
44 c u r _ s l v = f i n d _ n e x t _ s l v (cur , p a t h) ;
45 }
46 r e t u r n c o r r e s p o n d i n g _ s l v s ;
47 }

Algorithm 1. C Style Pseudo Code of SRL(tree)

the neighbor’s slv can be searched following the linked list
pointers (lines 42∼45). Second, SRL(tree) changes the value
of the found slv using an atomic operation to perform an RW
lock on the segment (lines 12∼15). The process of acquiring
or releasing an RW lock with the corresponding slv that I/O
threads find through the index tree is explained in the next
section.

B. LOCK ACQUISITION AND RELEASE PROCESS
Algorithm 2 describes the lock acquisition and release pro-
cess of the SRL. Suppose that a thread tries to acquire an
RW lock from start to end segments. In this case, atomic
operations supported by the hardware are used to acquire the
RW lock for the segments. Note that the order of locking the
segments is preserved to prevent deadlock. If a thread fails

24576 VOLUME 9, 2021

J.-H. Kim et al.: Parallelizing Shared File I/O Operations of NVM File System for Manycore Servers

1 vo id t r y _ t o _ a c q u i r e _w r i t e r _ l o c k (t a r g e t _ s l v s) {
2 uns i gned i n t wlock = 1 << 31 ;
3 /∗ 1 0 0 0 0 . . . 0 , when w r i t e l o ck i s h e l d ∗ /
4

5 f o r (n =0; n<= numbe r _o f _ c o r r e s pond i n g_ s l v s ; n++)
6 whi l e (t r u e) {
7 smp_mb_before_atomic () ; / / b a r r i e r
8 o ld=atomic_cmpxchg (& t a r g e t _ s l v s [n] ,
9 0 , wlock) ;

10 smp_mb_af t e r_a tomic () ; / / b a r r i e r
11 /∗ wr i t e l o ck su c c e ed s on ly
12 when o ld s l v was 0 ∗ /
13 /∗ namely , t h e r e i s n e i t h e r w r i t e r nor r e a d e r ∗ /
14 i f o l d == 0 ;
15 b r eak ;
16 }
17 r e t u r n ;
18 }
19

20 vo id t r y _ t o _ a c q u i r e _ r e a d e r s _ l o c k (t a r g e t _ s l v s) {
21 uns i gned i n t wlock = 1 << 31 ;
22 /∗ 1 0 0 0 0 . . . 0 ∗ /
23

24 f o r (n =0; n<= numbe r _o f _ c o r r e s pond i n g_ s l v s ; n++)
25 whi l e (t r u e) {
26 smp_mb_before_atomic () ; / / b a r r i e r
27 o ld = a t om i c_ add_un l e s s (& t a r g e t _ s l v s [n] ,
28 1 , wlock) ;
29 smp_mb_af t e r_a tomic () ; / / b a r r i e r
30 /∗ i f o l d s l v was no t wlock ,
31 r e ad l o ck a lways s u c c e ed s ∗ /
32 /∗ namely , f a i l on ly when t h e r e i s a w r i t e r ∗ /
33 i f o l d != wlock ;
34 b r eak ;
35 }
36 r e t u r n ;
37 }

Algorithm 2. C Style Pseudo Code to Acquire and Release SRL

to acquire a lock on all segments, it cannot enter the critical
section.

When a thread needs to write to a region from start to end
segments, SRL attempts to acquire a writer lock by calling
an atomic_cmpxchg function for each segment in [start, end]
(lines 1∼18). If the old value of the slv is 0, which means
that there is no writer or reader, the writer lock acquisition
succeeds and the function changes the left-most bit of the slv
to 1. Otherwise, the value of the slv is unaffected, and the
writer lock acquisition attempt fails. Then, the writer thread
will try to acquire the writer lock again.

On the other hand, a read thread tries to hold a reader lock
by increasing the reader counter with the atomic_add_unless
function which is also a hardware atomic operation (lines
20∼37). This function increases the value of the slv by 1 only
when the left-most bit of the slv is not 1. This means that
the reader lock fails only when the writer lock is already
held.

To unlock the reader andwriter locks, SRL does not require
trying atomic operations repeatedly. In order for a writer to
unlock, it simply clears the left-most bit using the clear_bit
atomic operation. Since any writer or reader’s lock acquisi-
tions cannot succeed until the writer lock holder releases the
lock, it is always safe to clear the left-most bit. Whereas, for
a reader to unlock, it just decreases the reader counter by
1 using the atomic_dec atomic operation.

In the current implementation, when segment locks are
held by readers, the priority of incoming readers is always
higher than writers. In order to prevent writer starvation and
provide fairness, an aging technique generally used by many
RW locks [22] can be applied to SRL. If the waiting time
for the writer to acquire the lock is too long, the writer can
preempt the segment lock by temporarily blocking readers.

C. DYNAMIC SEGMENT LOCK MEMORY OVERHEAD
We can mathematically calculate the memory usage in SRL
according to the setup variables (maximum file size, segment
size, tree depth) and the size of file space actually used
(working set).

For example, the index size (I) of each level (l) in the tree is
defined in Equation 1, whereM and S are the number of bits
to represent the file size and segment size, and d represents
the tree depth.

I ≈
⌊
M − S
d

⌋
(1)

Then, the number of nodes required for each level (Nl) can be
calculated as in Equation 2, whereW is the number of bits to
represent the working set size and n = W−S− I ∗ (d−l−1).

Nl =

{
2n if n > 0
1 else

(2)

Using the equations above, the total memory usage F(x) in
SRL can be calculated as Equation 3.

F(x) =
d−1∑
l=0

Nl ∗ 2I ∗ pointer size+ 2W−S ∗ size of slv (3)

D. GUARANTEEING CONSISTENCY
The NOVA write operation updates the tail pointer after
appending the log entry to the log block to validate the cor-
responding log entry. With the proposed range lock, NOVA
increases write parallelism by allowing multiple threads to
write data in parallel; however, in the end, concurrent write
threads compete for the tail pointer where log entries are
updated, resulting in a race condition. We solved this race
condition by pre-determining the tail pointer location each
thread uses before updating the tail pointer. In this way, each
thread can update the tail pointer in their own location through
atomic operations, eliminating the race condition on the tail
pointer. The predetermination of the tail pointer location is
protected by a lock and is mutually exclusive. In this process,
if the current log page is full, log expansion occurs the same
as NOVA.

The tail update, however, may lead the file system to an
inconsistent state when multiple threads perform shared file
writes concurrently. Suppose that two threads are performing
a write operation to a shared file at the same time and the
first thread completes appending its log entry before the sec-
ond thread. Suppose also that a sudden power failure occurs
while the first thread is trying to update the tail pointer after

VOLUME 9, 2021 24577

J.-H. Kim et al.: Parallelizing Shared File I/O Operations of NVM File System for Manycore Servers

TABLE 1. Intel Optane DC PM server.

the second thread finishes updating the tail pointer. The tail
pointer now points to the log entry of the second thread.
After the system is restarted, the file system is recovered
by scanning log entries until it encounters the last entry to
which the tail pointer points. Therefore, it is possible that the
recovery process includes an invalid log entry such as that
of the first thread, which leads to an inconsistent file system
status.

To solve this problem, we introduced a commit mark-based
mechanism to validate the log entry. After a log entry is
appended, we add a commit mark to the entry. The commit
mark write operation is done using atomic operations. Mem-
ory fence and cache line flush operations are also used to
guarantee thememory order of the commitmark and log entry
update. While recovering, the file system checks whether it is
a vaild log entry with a commit mark to avoid inconsistency
problems. Also, there may be valid log entries after the tail
pointer, so we check the commit marks of all log entries in the
file. Note that we are not parallelizing log entry insertions,
but solving the inconsistency problem that can occur when
writing file data concurrently.

V. EXPERIMENTAL ENVIRONMENT
To evaluate the scalability of NOVA, we conducted various
experiments on a 56-core manycore server equipped with
Intel Optane DC PM modules. The detailed specifications of
the server are shown in Table 1.

A. SERVER ARCHITECTURE AND CONFIGURATION
The Intel Optane DC PM server is equipped with two sockets
and 12 Intel Optane DC PMmodules. Each socket has 28 pro-
cessing cores and two on-board memory controllers (MC).
One processor supports three memory channels per memory
controller. The DRAMmodule and the PMmodule are paired
and connected to onememory channel. Eachmemorymodule
uses DDR4 (for DRAM) and DDR-T protocol (for PM) to
communicate with the memory controller. Each socket is
connected through ultra path interconnect (UPI) [23]. Pro-
cessors that support the Optane DC PMmodules provide PM
store instructions such as CLWB to flush cache lines to PM
and non-temporal store to bypass the cache hierarchy and
write directly to the PM. The connection topology between
processors and memory module is depicted in Figure 8.

The Intel Optane DC PM server provides three options for
the use of PM modules.
• Memory mode: Optane DC PM modules lose data per-
sistence and are used as extended DRAM memory.

FIGURE 8. Processor structure for Intel Optane DC PM server.

• Interleaved app direct mode: Optane DC PM mod-
ules exist as persistent devices that are independent of
DRAM. In this mode, the access to the PM is interleaved
across six PM modules in a single socket. HW bottle-
necks can be reduced bymultiple threads accessing mul-
tiple modules in a striped manner, rather than multiple
threads accessing a single PM module.

• Non-interleaved app direct mode: Similar to the inter-
leaved app direct mode, Intel Optane DC PM modules
are used as separate persistent devices. However, all
access to the PM is directed to a single PM module.

In this study, the interleaved app direct mode was
used.

B. MEMORY BANDWIDTH MEASUREMENT
In this subsection, we evaluate the bandwidth of PMmodules
by increasing the number of cores for read only andwrite only
workloads. For the experiments, we used the memory latency
checker (MLC) tool by Intel [24]. The MLC tool measures
peak bandwidth for workloads, in which multiple threads
read or write sequentially to memory devices. In particular,
for accurate memory latency measurements, the MLC tool
disables the hardware pre-fetcher.

In the non-uniform memory access (NUMA) system,
accessing the memory located at the remote socket has higher
latency and lower bandwidth than accessing the local socket.
In this paper, performance degradation caused by remote
socket access compared to local socket access is called the
NUMA effect. To accurately measure the PM performance
considering the NUMA effect, we experimented with the
following configuration.
• PM(src,dst): Cores performing I/O in socket src access
the memory buffer allocated to Optane DC PM in socket
dst , where src and dst are the socket numbers depicted
in Figure 8.

Since PM(0,0) and PM(1,1) (also PM(0,1) and PM(1,0))
had identical performance, we ran experiments using just
one of the two configurations. Memory buffers are allocated
per core and are not shared between cores. The size of the
buffer is 300 MB, which is large enough to cause L3 cache
miss.

Figure 9(a) shows the write bandwidth measurements for
PM(0,0) and PM(0,1) by increasing the number of cores. In
this experiment, write threads use the 64-byte non-temporal
store instruction, which is the same method as that used

24578 VOLUME 9, 2021

J.-H. Kim et al.: Parallelizing Shared File I/O Operations of NVM File System for Manycore Servers

FIGURE 9. The results of write and read bandwidth measurements by
increasing the number of cores in each memory module.

when writing data blocks in NOVA. As shown in Figure 9(a),
the write bandwidth of PM(0,0) increases up to 12.3 GB/s
on 4 cores and gradually decreases after 4 cores, whereas the
maximumbandwidth of PM(0,1) is about 6.5GB/s on 8 cores,
and it also continues to decrease as we increase the number
of cores.

It is assumed that the reduction of write bandwidth is due
to the two hardware limitations of the Optane DC PM server
described in [25]. First, data is stored in the write pending
queue (WPQ) inside the memory controller before being
loaded onto the data bus. Data that reaches the WPQ through
PM store instructions such as CLWB and non-temporal store
are guaranteed to be flushed to the Optane DC PM module
even if a power failure occurs (within the hold-up time).
Therefore, the contention of the queue can adversely affect
the write bandwidth. Second, the data arriving at the Optane
DC PMmodule is stored in the combining buffer. Contention
for space in the buffer will lead to performance degradation
with higher thread counts. Interestingly, the write bandwidth
of PM(0,1) degrades more rapidly than that of PM(0,0) as
we increase the number of threads performing concurrent
writes. The write bandwidth of PM(0,0) on 28 cores is about
6.6 GB/s, while the write bandwidth of PM(0,1) is only
0.4 GB/s. This is also because of the hardware limitation
explained in [25] and the NUMA effect.

Figure 9(b) shows the read bandwidth measurements for
PM(0,0) and PM(0,1) by increasing the number of cores and
performing 64-byte read operations from the buffer in the
target PM. As shown in Figure 9(b), the read bandwidth of
PM(0,0) increases linearly up to 40.04 GB/s on 28 cores as
we increase the number of cores. While the bandwidth of
PM(0,1) also increases up to 15 GB/s on 8 cores, it starts
to decrease after 8 cores due to the same reasons explained
in Figure 9(a).
In summary, we make the following observations from

Figure 9. First, the read bandwidth is generally higher than
the write bandwidth in PM. For instance, the read bandwidths
of PM(0,0) and PM(0,1) are 3.24× and 2.31× higher than
the corresponding write bandwidths, respectively. Second,
the NUMA effect in PM is more significant in performing
write operations than read operations, as we increase the
number of cores. That is, the write bandwidths of PM(0,0)
are 1.86× and 16.5× higher than those of PM(0,1) on 8 cores
and 28 cores, respectively. However, the read bandwidths of
PM(0,0) are 1.98× and 35.7× higher than those of PM(0,1)
on 8 cores and 28 cores, respectively.

VI. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
Baselines: In this section, we evaluate SRL on the Testbed
described in Section V. For the experiments, we made four
versions of NOVA.

• NOVA-default: Vanilla NOVA using an RW lock in
Linux.

• NOVA-interval: NOVA using an interval tree-based
range lock in Linux.

• NOVA-SRL(array): NOVA using an array-based imple-
mentation of SRL. The size of the slv array is fixed to
the maximum size allowed by the file system [18].

• NOVA-SRL(tree): NOVAusing a radix tree-based imple-
mentation of SRL, where slvs are dynamically allocated
and freed.

In particular, to study the space efficiency of SRL,
we intentionally compared static (array) and dynamic (tree)
versions of SRL in our experiments. When indexing slv into
an array, we can predict the most ideal performance with
NOVA-SRL(array). However, there is the problem of wasted
space with this approach. For SRL, the default segment size
is 4 KB in the experiments unless the size is specifically
mentioned. In addition, the level of the radix tree is 5 in
SRL(tree) and the index of each level is divided as shown
in Figure 7.
PM Device Configuration: We created a PM device using
the PM modules on socket 0 with an interleaved app direct
mode because the PM modules across sockets cannot be
aggregated as a single device in the current Testbed.
Workloads: For synthetic workloads, we used the FxMark
benchmark [15] for evaluations that can generate various
workload patterns. Specifically, we used shared file I/Owork-
loads such as DWOM and DRBM. The DWOM workload
performs multi-threaded shared file writes where multiple
writers write to a shared file. The DRBM workload performs
multi-threaded shared file reads where multiple readers read
from the same file. We also modified the FxMark to mix
the aforementioned two workloads where the read and write
ratio of the workload patterns can be adjusted. In each work-
load, each thread continuously issues write/read requests to
mutually exclusive regions of a file between threads. We
experimented with each workload several times to get the
average value and error rate using the standard deviation.
When performing benchmarks, I/O threads and CPU cores
are mapped one-to-one. In addition, FxMark pre-allocates
files with the size of the number of cores×8 MB before
measuring performance.

For realistic workloads, we used HACC-IO [26] and
RocksDB [27]. HACC-IO is an I/O benchmark for
HACC [28], a cosmological simulation framework for an
HPC environment. In HACC-IO, each MPI process simulta-
neously writes data to different partitions of a 10 GB shared
checkpoint file. RocksDB is a high-performance NoSQL
database based on log-structure merge (LSM) trees. We
experimented with the scalability of NOVA using DBbench

VOLUME 9, 2021 24579

J.-H. Kim et al.: Parallelizing Shared File I/O Operations of NVM File System for Manycore Servers

FIGURE 10. Measurements of the maximum lock acquisition latency for acquiring three versions of range locks.

in RocksDB, which is commonly used to measure file
system performance. In our RocksDB experimental setup,
several threads simultaneously generate random-read and
random-write for 10 M keys and 100 B values.

B. PERFORMANCE EVALUATION
1) LOCK ACQUISITION LATENCY
Figure 10 compares the maximum latency measurements
of three range locks (i.e., interval tree-based range lock,
SRL(array), and SRL(tree)) by increasing the number of
threads trying to acquire a lock. In this experiment, we mea-
sured the range lock acquisition latencies for two writing pat-
terns such as initial writing and overwriting using the DWOM
workload. For example, the results with legend (i) such as
interval(i), SRL(tree,i) and SRL(array,i) indicate the latency
measurements when the initial writing operations to a file are
performed, whereas the results with legend (o) are the latency
measurements for the overwriting operations.

Figure 10(a) depicts the latencies measured over a sin-
gle socket (i.e. up to 28 cores). As shown in Figure 10(a),
the latency of SRL(array) is relatively low compared to those
of other range locks regardless of the number of cores or
writing patterns, because the lock variables are statically allo-
cated. On the other hand, in the interval tree-based range lock
where a coarse-grained mutex lock is necessary to insert a
range node into the tree, the latency increases almost linearly
as we increase the number of cores. That is due to the con-
tention for the mutex lock as the number of lock competitors
increases. As a result, the lock acquisition latencies of inter-
val(i) and interval(o) are 5.2× and 16.2× higher than those
of SRL(array) on 28 cores. In SRL(tree), the latency varies
depending on the writing patterns rather than the number
of cores. The latency of SRL(tree,i) is less affected by the
number of lock competitors sincemutex locks are not used for
the index trees. However, SRL(tree,i) has the highest latency
of 1,500 nsec on 1 core because slvs need to be dynamically
allocated when threads initially write to a file. In contrast,
SRL(tree,o) has low latency similar to SRL(array) because
slvs are already allocated when the overwriting operations are
performed.

We also checked the lock acquisition latencies of range
locks across two sockets (i.e., up to 56 cores) to see whether

the NUMA configuration affects the overall latency. As
shown in Figure 10(b), the latencies of interval(i) and inter-
val(o) rose sharply after 28 cores, which is the NUMAbound-
ary of our Testbed. For example, the latencies on 56 cores
are almost 10.3× and 9.02× higher than those on 28 cores.
This can be explained by the following reasons. In the interval
tree-based range lock, each thread is supposed to modify
the lock variable for the mutex lock, which is shared by all
threads participating for the race condition. Then, the mod-
ification of this shared variable results in invalidating the
cache lines including the lock variable of waiting threads
and even lock holders. In particular, when a cache line is
shared among threads in a NUMA environment, frequent
invocations of the cache line invalidation to maintain the
cache coherence become a significant overhead [19], [29].
In the case of SRL(tree,i), when it dynamically allocates
slvs, the cache line for atomic operations can be shared.
Thus, the latency on 56 cores is 1.29× higher than that
on 28 cores. On the other hand, this overhead does not
exist in SRL(tree,o) and SRL(array), because the lock vari-
ables for the I/O threads are already assigned and are not
shared.

There is also an overhead of SRL for a single thread.
For example, for large-sized write operations, NOVA only
takes a single lock, whereas SRL has to lock multiple seg-
ments. Nevertheless, the overhead of SRL has little effect
on overall performance. In NOVA-SRL, the total time taken
when a thread executes a write operation is expressed as
follows.

T (total) = T (page write)+ T (lock acquisition) (4)

At this time, T (lock acquisition) which is the time to acquire
locks for all segments, is very small compared to T (page
write) which is the time to write to the PM. So the total
execution time is bound to T (page write). In our experiment,
the time it takes for one thread to write 1 GB was 1.42 sec
and 1.44 sec for NOVA-default andNOVA-SRL(tree), respec-
tively. As a result, NOVA-SRL can provide concurrency by
parallelizing multiple I/O operations, while it does not have
much performance overhead compared to NOVA, even for a
large single I/O operation.

24580 VOLUME 9, 2021

J.-H. Kim et al.: Parallelizing Shared File I/O Operations of NVM File System for Manycore Servers

FIGURE 11. Comparison of additional memory usage for segment
management.

2) MEMORY USAGE ANALYSIS
We evaluated the memory usage of SRL based on Equation 3
discussed in Section IV-C. For fair evaluation, we assumed
that the maximum file size in the file system is 1.5 TB, and
each segment size is 4 KB.

Since the actual size of a file is not known in advance when
the file is created, SRL(array) statically allocates the number
of slvs based on themaximumfile size regardless of the actual
file size. Thus, estimating by substituting the working set as
the maximum file size, SRL(array) requires about 1.5 GB of
memory space as shown in Figure 11. On the other hand,
SRL(tree) uses a memory space proportional to the actual
file size in use. When the file size is smaller than 512 GB,
SRL(tree) always uses less memory than SRL(array). It is
worth noting that the amount of memory used for the interval
tree-based range lock increases proportionally to the number
of I/O threads. If it is assumed that the node size of the tree
is 128 B and the total number of threads performing file I/O
(i.e., the number of threads actually writing or reading the
file + the number of threads waiting to acquire locks) is N ,
the memory usage of the interval tree-based range lock will
be N ∗ 128 B. However, the memory use of SRL(tree) and
SRL(array) is only affected by the file size, not the number of
threads.

3) SCALABILITY ANALYSIS
Figure 12 analyzes the scalability of four NOVA versions
with different I/O patterns. As shown in Figure 12(a),
NOVA-default is not scalable in the DWOM workload
due to the shared file writer-writer problem. NOVA-default
offers only 0.8 GB/s on 1 core and its performance slightly
decreases afterward. On the other hand, the maximum
throughputs of other range lock-based NOVA versions reach
up to 2 GB/s on 8 cores and decrease after 28 cores.
The throughput stalling after 8 cores is because of the
congestion in the memory controller’s WPQ (as explained
in Figure 9(a)). Also, the reason why the throughput begins
to decrease after 28 cores is due to the NUMA effect. We also
observed that the decreasing rate of NOVA-interval is greater
than those of NOVA-SRL(array) and NOVA-SRL(tree). This
is because the mutex lock used for the interval tree is
not NUMA-aware, as seen in the previous section. Finally,
the throughput of NOVA-SRL(tree) is very similar to that
of NOVA-SRL(array) because DWOM is a workload that

overwrites blocks and the overhead for the index tree in
NOVA-SRL(tree) is negligible.

Figure 12(b) shows the throughput results of four NOVA
versions using the DRBM workload. In NOVA-default,
the throughput reaches up to the maximum 45.5 GB/s on
8 cores, and subsequently decreases to 20.7 GB/s on 56 cores.
This is attributed to the use of a reader counter lock in NOVA-
default. That is, multiple readers can increase the reader
counter while allowing read operations in parallel. However,
as more threads attempt to modify the shared reader counter,
the cache line invalidation overhead severely increases and
the throughput begins to drop. Interestingly, the through-
put of NOVA-interval is only 18.4 GB/s on 1 core, and
it continues to decline afterward to 3.2 GB/s on 56 cores,
which is far worse than that of NOVA-default. For every read
operation, the reader first holds the coarse-grained tree lock,
inserts itself into the tree, traverses the tree to find overlap-
ping nodes, and then releases the lock. This coarse-grained
tree lock completely serializes the reader lock acquisition
process and negates any benefit of using multiple threads.
NOVA-SRL(tree) and NOVA-SRL(array) show great scala-
bility up to 56 cores. Since RW lock variables are defined
for each segment of a file, the reader lock acquisition does
not invalidate the cache line. Thus, there does not exist any
serialization point in acquiring the reader lock. Also, in the
DRBM workload, since each thread reads the same data
repeatedly, cache misses for the data can barely occur. This
leads to substantially high throughput up to nearly 1 TB/s. For
instance, the throughput of NOVA-SRL(array) is 1,040 GB/s,
while that of NOVA-SRL(tree) is 965.3 GB/s on 56 cores. It
can be seen that NOVA-SRL(tree) has slightly lower perfor-
mance on 56 cores due to its tree-traversing overhead.

Figure 12(c) shows throughput results using the mixed
workload with a 3:1 write and read ratio. In this case,
the throughput of NOVA-default does not scale at all because
of the low write throughput. Similarly, NOVA-interval
also does not scale due to its poor read performance
despite the benefit of parallel writes. On the other hand,
NOVA-SRL(array) and NOVA-SRL(tree) have scalable per-
formance and their throughputs reach around 120 GB/s on
56 cores. Figure 12(d) is also the throughput results using
the mixed workload with a 1:3 write and read ratio. We have
similar observations as in the workload with a 3:1 write and
read ratio, but Figure 12(d) shows higher throughput than
Figure 12(c) because there are more reads than writes in the
workloads.

4) REALISTIC WORKLOAD RESULTS
Figure 13 shows the results of throughput measurement
for HACC-IO [26] using a variable number of MPI pro-
cesses. Since there is little performance difference between
array-based and tree-based SRL, we ran experiments with
NOVA-SRL(tree). Figure 13 shows a similar trend to the
DWOM workload evaluation results. NOVA-default exhibits
lower scalability compared to NOVA with range-based
locking due to the shared file writer-writer problem. The

VOLUME 9, 2021 24581

J.-H. Kim et al.: Parallelizing Shared File I/O Operations of NVM File System for Manycore Servers

FIGURE 12. Evaluation of the scalability of the NOVA file system according to various workload patterns on the Intel Optane DC
server. Error bars are shown as average standard deviation.

FIGURE 13. Throughput comparision for HACC-IO N-to-1 checkpoint
workloads.

I/O throughput of NOVA-interval and NOVA-SRL(tree)
increases as the number of cores increases, reaching up
to 6.5 GB/s and 6.9 GB/s on 16 cores respectively. As a
result, NOVA-SRL(tree) throughput is up to 3.8× higher
than NOVA-default for the same reasons as in the DWOM
workload.

Figure 14 shows the throughput comparisons for RocksDB
by varying the number of application threads. The data
read:write ratio for this workload is 9:1, but the result is
completely different from the FxMarkworkloads experiment.
NOVA-default and NOVA-SRL (tree) scale almost equally
with respect to the increased number of threads. The reason
why NOVA-SRL(tree) has not improved over NOVA-default
can be attributed to the I/O pattern of the RocksDB as follows:
unlike the DRBM experiment results, the CPU cache miss

FIGURE 14. Throughput comparison with RocksDB by varying threads in
DBbench workloads.

rate is very high because of the random read, so the read I/O
performance is bound on the speed of reading data from the
PM device. Therefore, the shared file reader-reader problem
of the existing NOVA is not observed. Moreover, since the
shared file write pattern rarely exists, the I/O parallelism
by SRL did not work for this workload. On the other hand,
NOVA-interval had low overall performance scalability due
to the lock overhead protecting the interval tree as described
in the DRBM experiment results. Rather, the performance
of NOVA-defalut on 56 cores was 2.28× higher than that of
NOVA-interval.

5) SENSITIVITY ANALYSIS BY SEGMENT SIZE
We analyzed the throughput of NOVA-SRL(tree) with differ-
ent segment sizes and file sizes as shown in Figure 15. We

24582 VOLUME 9, 2021

J.-H. Kim et al.: Parallelizing Shared File I/O Operations of NVM File System for Manycore Servers

FIGURE 15. Throughput of NOVA-SRL(tree) according to the file size and
segment size when threads concurrently perform I/Os on a shared file.

varied the segment size from 4 KB to 256 KB, and used three
file sizes such as 120 MB, 480 MB, and 960 MB for the
experiments. For the evaluation, we ran 56 I/O threads that
performed the DWOM and DRBM workloads over the max-
imum number of CPU cores (i.e., 56 cores) in the Testbed.
However, in the DWOM and DRBMworkloads, it is difficult
to measure sensitivity according to the segment size because
threads repeatedly perform I/Os in each range. Therefore,
we slightly modified FxMark so that it allowed threads to
randomly access pages of a file where they access mutually
exclusive areas between threads.

Figure 15(a) shows the average write throughput mea-
sured by varying file size and segment size. As expected,
when the segment size increases, thread contention occurs
in the slv, resulting in performance degradation. Whereas
if the file size gets larger, thread contention for the slv is
alleviated.

Figure 15(b) shows the average read throughput measured
by varying file size and segment size. Unlike the DRBM
workload, which reads the same data repeatedly, the modified
random read pattern incurs last-level cache misses. In partic-
ular, as the file size increases, the spatial locality of threads
decreases. To confirm this, wemeasured the cache miss ratios
by increasing the file size. As expected, the cache miss ratio
in a 120 MB file was only 2.61%, while the cache miss
ratios in 480 MB and 960 MB files significantly increased
to 33.85% and 55.53%, respectively. It is evident that in the
cases of 480 MB and 960 MB file sizes, the cache is not
sufficiently utilized. For the 120 MB file size, performance
is gradually degraded as the segment size increases. This can
be explained by the fact that the probability of competing for
the read counter of slv increases as we increase the segment
size, which results in increasing the cache line invalidation
overhead.

VII. RELATED WORK
Range-based locking can selectively refine a critical section
protected by a lock to increase the parallelism of a system. It
is mainly used in a distributed file system where large data
or metadata files are shared by many threads. GPFS [21]
and Lustre [30], [31] are famous parallel distributed file
systems that perform range locks for file synchronization.
GPFS uses a negotiation protocol when nodes in a cluster
start writing to a shared file, requesting a file area that other
nodes are no longer using. Lustre also confirms that there

is no conflict with the range of other I/O requests. Also,
W. Liao [32] proposed a few file domain partitioningmethods
designed to reduce lock conflicts under locking protocol
adopted by GPFS and Lustre. That is, they all perform a range
comparison between lock competitors. In such a distributed
environment, the overhead of range comparison may not
be seen due to networking costs. However, considering the
latest manycore server, the situation where multiple threads
perform I/Os concurrently for large files is no longer an
issue that occurs only in distributed environments. Therefore,
in this paper, we analyzed the overhead of the existing interval
tree-based range lock and proposed a segment-based range
lock. Kogan et al. [33] proposed a linked list-based range lock
and referred to our previous work [18]. According to [18],
they claimed that the lower the degree of overlapping of the
range, the higher the performance of theSRL. In a file system,
it is generally rare to write and read while overlapping the
same range in shared file I/O, so SRL is efficient.
Range-based synchronization has been performed in an

attempt to design fine-grained locks. On the other hand, it is
well known that the use of a non-scalable lock becomes a
bottleneck of system performance scalability [19], [34]. In
order to design scalable locks, researchers mainly reduce
the number of accesses to lock variables competitively
trying to acquire locks. This is because it brings con-
gestion to the memory bus and causes big problems in
performance [35]. In particular, as most large systems are
manycore servers that support NUMA architecture, a new
challenge has been given to the existing scalable lock design.
Therefore, there have been many research efforts to design
a NUMA-aware scalable lock even in a high-contended sit-
uation [22], [36], [37]. Cohort lock [22] and CST lock [36]
use NUMA-aware hierarchical locking. They use scheduling
techniques that give priority to lock competitors in the same
socket, reducing the situation of sharing a cache line contain-
ing lock variables between different sockets. We can apply
the mechanisms of these studies to our range locking in the
future to address problems that have not yet been solved.

VIII. CONCLUDING REMARKS
In this paper, we implemented a variant of the NOVA file sys-
tem with a fine-grained range-based RW locking method that
locks only a part of the file, thus allowing parallel I/Os in a
single shared file. In particular, we proposed a segment-based
range lock called SRL suitable for the NVM file system in a
manycore environment. We conducted various experiments
on a manycore server equipped with real PM modules and
evaluated the proposed approach using benchmarks in which
multiple threads perform I/Os to the shared file area. The
benchmarking results showed that the SRL-based NOVA
outperforms the original NOVA by 3× in terms of write
throughput. In addition, we found that the original NOVA did
not utilize the cache efficiently, whereas our implementation
fully utilized the cache. As a result, the read throughput
scaled linearly as we increase the number of cores. From
our investigation of various Linux file system architectures,

VOLUME 9, 2021 24583

J.-H. Kim et al.: Parallelizing Shared File I/O Operations of NVM File System for Manycore Servers

we expect that SRL can be easily employed in other file
systems.

REFERENCES
[1] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen,

R. M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and
C. H. Lam, ‘‘Phase-change random access memory: A scalable technol-
ogy,’’ IBM J. Res. Develop., vol. 52, nos. 4–5, pp. 465–479, 2008.

[2] R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui,
J. Javanifard, K. Tedrow, T. Tsushima, Y. Shibahara, and G. Hush,
‘‘A 16 Gb ReRAM with 200 MB/s write and 1GB/s read in 27 nm
technology,’’ in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2014, pp. 338–339.

[3] Intel. (2017). Revolutionizing Memory and Storage. [Online].
Available: https://www.intel.com/content/www/us/en/architecture-and-
technology/intel-optane-technology.html

[4] J. Xu and S. Swanson, ‘‘NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories,’’ in Proc. 14th USENIX Conf. File
Storage Technol. (FAST), 2016, pp. 323–338.

[5] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, ‘‘System software for persistent memory,’’
in Proc. 9th Eur. Conf. Comput. Syst. (EuroSys), 2014, pp. 15:1–15:15.

[6] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and
M. M. Swift, ‘‘Aerie: Flexible file-system interfaces to storage-class
memory,’’ in Proc. 9th Eur. Conf. Comput. Syst. (EuroSys), 2014,
pp. 14:1–14:14.

[7] J. Ou, J. Shu, and Y. Lu, ‘‘A high performance file system for non-volatile
main memory,’’ in Proc. 11th Eur. Conf. Comput. Syst. (EuroSys), 2016,
pp. 12:1–12:16.

[8] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, ‘‘Better I/O through byte-addressable, persistent memory,’’
in Proc. ACM SIGOPS 22nd Symp. Operating Syst. Princ. (SOSP), 2009,
pp. 133–146.

[9] S. Zheng, L. Huang, H. Liu, L. Wu, and J. Zha, ‘‘HMVFS: A hybrid
memory versioning file system,’’ in Proc. 32nd Symp. Mass Storage Syst.
Technol. (MSST), 2016, pp. 1–14.

[10] X. Wu and A. L. N. Reddy, ‘‘SCMFS: A file system for storage class
memory,’’ in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal.
(SC), 2011, pp. 39:1–39:11.

[11] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson,
‘‘Strata: A cross media file system,’’ in Proc. 26th Symp. Operating Syst.
Princ. (SOSP), 2017, pp. 460–477.

[12] M. Dong, H. Bu, J. Yi, B. Dong, andH. Chen, ‘‘Performance and protection
in the ZoFs user-space NVM file system,’’ in Proc. 27th ACM Symp.
Operating Syst. Princ. (SOSP), 2019, pp. 478–493.

[13] R. Yujie, M. Changwoo, and K. Sudarsun, ‘‘CrossFS: A cross-layered
direct-access file system,’’ in Proc. 14th USENIX Symp. Operating Syst.
Design Implement. (OSDI), 2020, pp. 137–154.

[14] S. S. Bhat, R. Eqbal, A. T. Clements, M. F. Kaashoek, and N. Zeldovich,
‘‘Scaling a file system to many cores using an operation log,’’ in Proc. 26th
Symp. Operating Syst. Princ. (SOSP), Oct. 2017, pp. 69–86.

[15] C. Min, S. Kashyap, S. Maass, and T. Kim, ‘‘Understanding manycore
scalability of file systems,’’ in Proc. USENIX Conf. Usenix Annu. Tech.
Conf. (ATC), 2016, pp. 71–85.

[16] J. Xu, J. Kim, A. Memaripour, and S. Swanson, ‘‘Finding and fixing
performance pathologies in persistent memory software stacks,’’ in Proc.
24th Int. Conf. Architectural Support Program. Lang. Operating Syst.
(ASPLOS), Apr. 2019, pp. 427–439.

[17] J. Corbet. (Jun. 2017).Range Reader/Writer Locks for the Kernel. [Online].
Available: https://lwn.net/Articles/724502/

[18] J.-H. Kim, J. Kim, H. Kang, C.-G. Lee, S. Park, and Y. Kim, ‘‘pNOVA:
Optimizing shared file I/O operations of NVM file system on manycore
servers,’’ in Proc. 10th ACM SIGOPS Asia–Pacific Workshop Syst., 2019,
pp. 1–7.

[19] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. T. Morris, and N. Zeldovich, ‘‘An analysis of linux scalability to many
cores,’’ in Proc. 9th USENIX Symp. Operating Syst. Design Implement.
(OSDI), vol. 10, no. 13, pp. 86–93, 2010.

[20] R. Liu, H. Zhang, and H. Chen, ‘‘Scalable read-mostly synchronization
using passive reader-writer locks,’’ in Proc. USENIX Annu. Tech. Conf.
(USENIX ATC), 2014, pp. 219–230.

[21] F. B. Schmuck and R. L. Haskin, ‘‘GPFS: A shared-disk file system for
large computing clusters,’’ in Proc. USENIX Conf. File Storage Technol.
(FAST), vol. 2, no. 19, p. 19-es, 2002.

[22] D. Dice, V. J. Marathe, and N. Shavit, ‘‘Lock cohorting: A general tech-
nique for designing NUMA locks,’’ ACM SIGPLAN Notices, vol. 47, no. 8,
pp. 247–256, 2012.

[23] Intel. Accessed: 2019. [Online]. Available: https://software.intel.com/en-
us/articles/intel-xeon-processor-scalable-family-technical-overview

[24] Intel. Intel Memory Latency Checker V3.8. Accessed: 2020. [Online].
Available: https://software.intel.com/en-us/articles/intelr-memory-
latency-checker

[25] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, ‘‘An
empirical guide to the behavior and use of scalable persistent mem-
ory,’’ in Proc. 18th USENIX Conf. File Storage Technol. (FAST), 2020,
pp. 169–182.

[26] V. Vishwanath. HACC I/O. Accessed: 2012. [Online]. Available:
https://github.com/glennklockwood/hacc-io

[27] RocksDB. Accessed: 2020. [Online]. Available: https://rocksdb.org/
[28] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,

P. Fasel, V. Morozov, G. Zagaris, T. Peterka, V. Vishwanath, Z. Lukić,
S. Sehrish, and W.-K. Liao, ‘‘HACC: Simulating sky surveys on state-
of-the-art supercomputing architectures,’’ New Astron., vol. 42, pp. 49–65,
Jan. 2016.

[29] P. Stenström, T. Joe, and A. Gupta, ‘‘Comparative performance evaluation
of cache-coherent NUMA and COMA architectures,’’ in Proc. 19th Annu.
Int. Symp. Comput. Archit., 1992, pp. 80–91.

[30] P. J. Braam and P. Schwan, ‘‘Lustre: The intergalactic file system,’’ in Proc.
Ottawa Linux Symp., 2002, vol. 8, no. 11, pp. 3429–3441.

[31] P. Braam, ‘‘The lustre storage architecture,’’ 2019, arXiv:1903.01955.
[Online]. Available: http://arxiv.org/abs/1903.01955

[32] W.-K. Liao, ‘‘Design and evaluation of MPI file domain partitioning
methods under extent-based file locking protocol,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 22, no. 2, pp. 260–272, Feb. 2011.

[33] A. Kogan, D. Dice, and S. Issa, ‘‘Scalable range locks for scalable address
spaces and beyond,’’ in Proc. 15th Eur. Conf. Comput. Syst. (EuroSys),
New York, NY, USA, 2020, pp. 1–15, doi: 10.1145/3342195.3387533.

[34] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich,
‘‘Non-scalable locks are dangerous,’’ in Proc. Linux Symp., 2012,
pp. 119–130.

[35] V. Luchangco, D. Nussbaum, and N. Shavit, ‘‘A hierarchical CLH queue
lock,’’ in Proc. Eur. Conf. Parallel Process. Berlin, Germany: Springer,
2006, pp. 801–810.

[36] S. Kashyap, C.Min, and T. Kim, ‘‘Scalable Numa-aware blocking synchro-
nization primitives,’’ in Proc. USENIX Annu. Tech. Conf. (USENIX ATC),
2017, pp. 603–615.

[37] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit,
‘‘NUMA-aware reader-writer locks,’’ in Proc. 18th ACM SIGPLAN Symp.
Princ. Pract. Parallel Program., 2013, pp. 157–166.

JUNE-HYUNG KIM received the B.S. degree
from the Department of Computer Science and
Engineering, Sogang University, Seoul, South
Korea, where he is currently pursuing the M.S.
degree in computer science. He is a member of
the Distributed Computing and Operating Sys-
tems Laboratory, Department of Computer Sci-
ence and Engineering, Sogang University. His
research interests include operating systems, file
and storage systems, and parallel and distributed
systems.

24584 VOLUME 9, 2021

http://dx.doi.org/10.1145/3342195.3387533

J.-H. Kim et al.: Parallelizing Shared File I/O Operations of NVM File System for Manycore Servers

YOUNGJAE KIM (Member, IEEE) received the
B.S. degree in computer science from Sogang Uni-
versity, Seoul, South Korea, in 2001, the M.S.
degree in computer science from KAIST, in 2003,
and the Ph.D. degree in computer science and
engineering from Pennsylvania State University,
University Park, PA, USA, in 2009. He was a
Research and Development Staff Scientist with the
U.S. Department of Energy’s Oak Ridge National
Laboratory from 2009 to 2015 and as an Assistant

Professor with Ajou University, Suwon, South Korea, from 2015 to 2016.
He is currently an Associate Professor with the Department of Computer
Science and Engineering, Sogang University. His research interests include
operating systems, file and storage systems, parallel and distributed systems,
computer systems security, and performance evaluation.

SAFDAR JAMIL received the B.E. degree in com-
puter systems engineering from the Mehran Uni-
versity of Engineering and Technology (MUET),
Jamshoro, Pakistan, in 2017. He is currently pur-
suing the M.S. degree leading to Ph.D. degree in
integrated program with the Department of Com-
puter Science and Engineering, SogangUniversity,
Seoul, South Korea.

He is also a member with the Distributed Com-
puting and Operating Systems Laboratory, and

with the Department of Computer Science and Engineering, Sogang Uni-
versity. His research interests include scalable indexing data structures and
algorithms and memory-centric computing.

CHANG-GYU LEE received the B.S. degree in
computer science from Ajou University, Suwon,
South Korea. He is currently pursuing the M.S.
degree leading to Ph.D. degree in integrated pro-
gram with the Department of Computer Science
and Engineering, Sogang University, Seoul. He is
also a member with the Distributed Computing
and Operating Systems Laboratory, Department
of Computer Science and Engineering, Sogang
University. His research interests include operat-

ing systems, file and storage systems, key-value stores, and parallel and
distributed systems.

SUNGYONG PARK (Member, IEEE) received
the B.S. degree in computer science from Sogang
University, Seoul, South Korea, and the M.S. and
Ph.D. degrees in computer science from Syra-
cuse University, Syracuse, NY. He is currently a
Professor with the Department of Computer Sci-
ence and Engineering, Sogang University. From
1987 to 1992, he worked for LGElectronics, South
Korea, as a Research Engineer. From 1998 to
1999, he was a Research Scientist with Bellcore,

where he developed network management software for optical switches.
His research interests include cloud computing and systems, virtualization
technologies, high-performance I/O and storage systems, and embedded
system software.

VOLUME 9, 2021 24585

