
Concurrent File Metadata Structure Using Readers-Writer Lock
Chang-Gyu Lee
Sogang University

Seoul, Republic of Korea
changgyu@sogang.ac.kr

Sunghyun Noh∗
Sogang University

Seoul, Republic of Korea
nsh0249@sogang.ac.kr

Hyeongu Kang
Sogang University

Seoul, Republic of Korea
hyeongu@sogang.ac.kr

Soon Hwang
Sogang University

Seoul, Republic of Korea
hs950826@sogang.ac.kr

Youngjae Kim†

Sogang University
Seoul, Republic of Korea
youkim@sogang.ac.kr

ABSTRACT
Linux file systems serialize threads when writing shared files. Re-
cent studies have attempted to adopt range locks on shared files
to solve this serialization problem, allowing file I/O to be executed
concurrently. However, we have found that even with a range lock,
I/O throughput no longer increases after a certain number of cores
and decreases rapidly on a manycore server. Through extensive
performance profiling, we found the cascading tree lock problem

that serializes concurrent accesses to the file metadata structure. A
mutex lock-based locking mechanism for each file metadata struc-
ture serializes I/O requests in modern Linux file systems such as
F2FS. In this paper, we present nCache, a novel file metadata cache
framework using readers-writer lock that allows concurrent I/O
operations for the shared file. nCache solves the I/O scalability
problem in the manycore server while ensuring consistent updates.
We implemented nCache in F2FS and evaluated it using FxMark
on a 120-core server with high-performance NVMe SSDs. Our ex-
tensive evaluations show that nCache achieves maximum device
throughput in FxMark’s shared file I/O workload. It also shows 4.1x
higher throughput compared to the baseline F2FS with range locks
for realistic workloads.

CCS CONCEPTS
• Software and its engineering→ File systems management;
Massively parallel systems; • Information systems→ Directory
structures;

KEYWORDS
Operating System, File System, Concurrency

∗S. Noh is currently affiliated with Samsung Electronics. This work was conducted
when he was with Sogang University.
†Y. Kim is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8104-8/21/03. . . $15.00
https://doi.org/10.1145/3412841.3441992

ACM Reference Format:
Chang-Gyu Lee, SunghyunNoh, Hyeongu Kang, SoonHwang, and Youngjae
Kim. 2021. Concurrent File Metadata Structure Using Readers-Writer Lock.
In The 36th ACM/SIGAPP Symposium on Applied Computing (SAC ’21), March

22–26, 2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3412841.3441992

1 INTRODUCTION
Manycore servers are equipped with hundreds of CPU cores. The In-
tel Optane DCmemory manycore server has 56 cores with two CPU
sockets on a single server [28], and the IBM manycore server has
120 cores with eight CPU sockets [12, 20]. With a large number of
cores in a single server, a highly parallel application generates mas-
sive parallel I/O to exploit higher storage throughput. For instance,
databases [10, 13, 29, 30], scientific simulations [3, 11, 17, 25, 31],
and machine learning frameworks aggressively utilize massive par-
allelism while generating a vast amount of parallel I/O for user
data, training data, and simulation checkpoints. Parallel I/O from
these applications usually falls into private file I/O or shared file
I/O. In private file I/O, each thread performs I/O on its own private
file. Each thread has exclusive access to that file, so there is little
contention between I/O threads in the file system. Thus, the I/O
throughput of the file system increases as the number of I/O threads
increases. On the other hand, in shared file I/O, multiple threads
share a single file, competing for the file metadata. Threads need
synchronization when accessing the shared file, so I/O throughput
does not increase with the number of I/O threads due to the file
sharing contention between threads in the file system.

When multiple threads write shared files, Linux file systems such
as Ext4 and F2FS [15] serialize thread’s file accesses. To solve this
problem, the file system adopts a range lock, granting access to the
file if a thread accesses a non-overlapping range of the file [12, 16].
However, we observed that there is a limit to increasing I/O through-
put. To assess the scalability of the range lock in the file system,
we evaluated F2FS with two types of range lock implementations
(interval tree-based range lock [16] and atomic operation-based
range lock [12]) on the IBM 120-core manycore machine using the
shared file write workload in FxMark [20]. Detailed experimental
setups are described in Section 5.1. Figure 1 shows the experiment
results of these two range lock implementations on F2FS. Both types
of range lock implementations (𝐹2𝐹𝑆𝑅𝐿 and 𝐹2𝐹𝑆𝐴𝑇) saturate the
maximum device bandwidth at 15 cores. However, the through-
put drops rapidly after 15 cores. Accordingly, the range lock fails

https://doi.org/10.1145/3412841.3441992
https://doi.org/10.1145/3412841.3441992

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea C. Lee et al.

F2FS AT

F2FS RL

F2FS

T
hr

ou
gh

pu
t (

K
O

P
S

)

0

100

200

300

400

500

of Cores

0 20 40 60 80 100 120

Figure 1: Comparison of default F2FS and two range lock
implementations for F2FS for shared file I/O. In the legend,
AT and RL denote interval tree-based range lock and atomic
operation-based range lock, respectively.

to scale. The same trend in both types of range lock implementa-
tions implies that the scalability bottleneck is not in the range lock
primitive itself.

We further analyzed the CPU cycle consumption of file system
functions using the same workload. Most of the CPU cycles are
consumed for searching the corresponding block address from
the file metadata and waiting for lock acquisition for it. 14.54% of
the total CPU cycles are consumed for accessing file metadata at
15 cores, while the device maximum throughput is saturated. On
the other hand, 51.37% of total CPU cycles are used for accessing
file metadata at 120 cores. From this result, we identified that the
performance drop is due to the lack of concurrency in the file
metadata structure.

Writing a file in a file system consists of (i) accessing filemetadata
and (ii) writing file data. The range lock enables concurrent file data
I/O on the shared file but does not help parallelize file metadata
accesses. That is, accessing file metadata is still serialized. We reveal
that the serialization problem in the file metadata access is the main
cause of the bottleneck for I/O scalability in file system using the
range lock for shared file I/O workloads. Since the file metadata
structure is fundamentally a tree, most file systems use the mutex
lock on file metadata structures to prevent inconsistent updates.
To solve this, we employ readers-writer lock (RW lock) to achieve
concurrent file metadata access. Thus, in this paper, we propose
nCache, a novel file metadata cache framework for concurrent file
metadata access using RW lock. Our work makes the following
specific contributions:
• Cascading Tree Lock Problem:We identified a cascading tree
lock problem of file metadata. In Linux file systems, when mul-
tiple threads access the same file metadata, every node of the
file metadata is protected using the inode mutex lock, and they
are all serialized. This problem is called the cascading tree lock
problem. In addition, we described the bottleneck that occurs
when accessing file metadata in F2FS as an example of updating
the Node Tree in F2FS.

• nCache Framework: We aimed to design a concurrent file
metadata structure where multiple threads access the file meta-
data concurrently and update it consistently. For this, we pro-
posed nCache, which employs readers-writer lock (RW lock)
on the file metadata (every node in Node Tree). nCache allows
concurrent access to the shared file by threads. We have also iden-
tified possible inconsistent update scenarios when updating file

Node ID: 5

Direct Node
Node ID: 6

Data BLK

Data LogNode Log
LBANode ID
5125
5136
······

Super
Block Metadata Area Main AreaLBA

NAT
Node ID: 6

Data BLK
LBA: 789

1

32

(a) F2FS’s on-disk data structure.

Node Tree

: Node
: Data

b

a
NAT

Node ID LBA
⋮ ⋮

c

(b) inode structure in the page cache.

Figure 2: On-disk data structure of the F2FS file system and
inode structure in the page cache.

metadata. For consistent file metadata updates, nCache adopts
double-checked locking [19, 22, 23].

• Implementation and Evaluation: For evaluation, we imple-
mented nCache for various versions of F2FS with a range lock
in Linux kernel version 4.1.4. As a representative result, F2FS,
which implements atomic range lock and nCache (denoted as
F2FSAT+NC), saturated all available write and read bandwidths of
the Intel Optane SSD 900P device in DWOM and DRBM work-
loads, which are shared file I/O workloads (write and read work-
loads respectively) of the FxMark benchmark [20]. We also ran
experiments using HACC-IO [26], which is an I/O benchmark
for HACC [6] and a representative parallel shared file I/O work-
load in HPC. The results show that F2FSAT+NC offers scalable
throughput as the number of cores increases on the manycore
server.

2 BACKGROUND
In this section, we describe the on-disk data structure of F2FS,
the inode structure of the page cache (Node Tree), Node Address
Translation (NAT) of F2FS, and range lock.

2.1 F2FS File System
F2FS [15] is a log-structured file system optimized for a solid-state
drive (SSD). F2FS has two types of logs which are Node Log andData
Log. In F2FS, file metadata such as inode, direct node, and indirect
node are called Node. The inode maintains file-specific metadata
such as the latest access time and a set of logical block addresses.
When the inode cannot hold the entire set of block addresses in
a fixed-size block because the file is big, the inode utilizes direct
node and indirect node. The indirect node stores block addresses
of direct nodes, and the direct node stores block addresses of file
data. The inode can address huge files by storing direct and indirect
nodes and searching the block addresses of the file data following
a chain of indirect and direct nodes.

Nodes are appended at the end of the Node Log when they are
updated. Nodes are distinguished by a unique identifier called a

Concurrent File Metadata Structure Using Readers-Writer Lock SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

File

T1 T2 T3Threads
3

Offset = 0KB
Size = 4KB

Offset = 8KB
Size = 16KB

Offset = 16KB
Size = 12KB

Blocked

Figure 3: Example of range lock use with writer threads.

Node ID. The file data is appended to the Data Log and referenced
by Nodes. F2FS uses Node ID to read a Node in the Node Log. That
is, Node ID has to be translated into a block address to access a
Node. To this end, F2FS maintains a mapping table called a Node
Address Table (NAT) in the file system-wide metadata. Figure 2a
shows on-disk structures and Node ID translation via NAT. For
example, consider the case of reading a single data block in the
middle of a file. First of all, F2FS searches the block address of the
inode using its Node ID in NAT (1). Because the target data block
is under the direct node, not the inode, F2FS takes the Node ID of
the direct node. Then the Node ID of the direct node is translated
by NAT into the block address again (2). Finally, F2FS retrieves
the block address of the data block from the direct node and then
reads the data (3).

2.2 Node Tree and NAT
The key difference between F2FS and previous log-structured file
systems comes from the NAT. The indirection using Node ID re-
duces recursive updates of Node in the log-structure file system.
Figure 2b shows the inode structure of a file in the page cache. It is
represented as a tree. For the convenience of explanation, we call
this tree Node Tree. Every Node in Node Tree represents a Node or
Data in F2FS. In other words, the inode is denoted by the root of
Node Tree. Direct or indirect nodes are denoted by internal nodes
of the tree, and data blocks of the file are denoted by leaf nodes.
Let’s consider when a portion of a file is updated (a). Since F2FS
is a log-structured file system, all updates will be out-of-place up-
dates. A new leaf node is created and then added to Node Tree,
and ancestor nodes are accordingly required to be updated in an
out-of-place manner. If its block address points nodes as traditional
log-structured file systems, all nodes in the path from the root to the
leaf node will be updated (b). However, in F2FS, only the parent
node and its block address in NAT will be updated due to Node ID
indirection (c).

2.3 Range Lock
Parallel I/O is one of the core techniques to maximize I/O through-
put. The increase in the number of CPU cores and the parallelism
of storage media has led to single servers generating massively par-
allel I/O workloads. However, Linux file systems such as EXT4 and
F2FS showed poor performance in parallel I/O on a shared file [20].
This is because the current implementation of the file system uses
mutex lock on inode for data consistency and accordingly serializes
I/Os to a shared file.

To enable parallel I/O on a shared file, recent studies [12, 16] have
introduced the range lock instead of the mutex lock on an inode.
The range lock provides exclusive or shared access to a specific
range of a file. In other words, a thread is only blocked when there
is another thread guaranteed exclusive access to an overlapping file
range. Figure 3 shows an example of how the range lock works with
parallel I/O to a shared file. Consider three threads, 𝑇1, 𝑇2, and 𝑇3,
writing a shared file in order. With inode mutex, all three threads
will be serialized. On the other hand, the range lock allows parallel
I/O from threads with non-overlapping ranges in the file as follows.

(1) 𝑇1 starts writing its file range. Because no other threads
are performing I/O, it is guaranteed that there is no range
overlapping. At this moment, 𝑇1 acquires a lock on its file
range.

(2) 𝑇2 first checks whether there is any range overlapping with
its file range. There is a range that 𝑇1 is writing, but it does
not overlap with the file range 𝑇2 is writing. Therefore 𝑇2
can perform I/O and acquire a lock on its file range.

(3) 𝑇3 also checks whether there is any overlapping range. How-
ever, unlike the case of 𝑇1 or 𝑇2, 𝑇2 is performing I/O on a
file range overlapping𝑇3’s range. Thus,𝑇3 is blocked until𝑇2
completes its I/O and releases the lock on that range. Once𝑇3
makes sure that there is no overlapping range, it will perform
the I/O by acquiring a lock on its file range.

3 PROBLEM STATEMENT
In this section, we describe the motivation for our work using the
interference problem that occurs when multiple threads perform
shared file I/O in F2FS, and define the cascading tree lock problem
of Node Tree.

3.1 Lack of Concurrency on File Metadata
To illustrate the concurrency problem in accessing file metadata,
we classified how a single I/O request is handled in F2FS into four
phases.
(1) Phase 1: The first step is I/O Initialization. In this phase, the

I/O request is passed to the kernel and sanitized. The first phase
includes the initialization of the file system-specific data struc-
tures.

(2) Phase 2: The second phase is Block Address Mapping. The file
system determines a set of block addresses for the I/O request by
traversing the file metadata. Specifically, F2FS traverses Nodes
via NAT translation as described in Section 2 with Figure 2b.

(3) Phase 3: The third phase is Device I/O. The actual I/O to the
device occurs in this phase. Since we target a fast NVMe SSD
(Solid State Drive), this phase is processed mostly in parallel
due to the device’s internal parallelism.

(4) Phase 4: The fourth phase is Wrap-up. After Device I/O is
finished, the file system checks whether Device I/O succeeded.
It also frees the file system-specific data structure and sets
appropriate flags for related kernel data structures such as page
cache. Lastly, the completion of the I/O request is handed over
to the caller.
Figure 4 shows a pipeline view of file I/O operations with dif-

ferent F2FS implementations. Figure 4a and 4b illustrate how con-
current I/O requests are processed in baseline F2FS and F2FS with

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea C. Lee et al.

2 3 41T2

21T3

1 2 3 4T1
✱ Per-File Mutex

(a) Baseline F2FS

T2

T3

T1
✱ File Metadata Mutex

1

1 2 3 4

2 3 4

1 2 3 4

: Mutex Lock

(b) F2FS with the range lock

1T2

T3

T1 1 2 3 4

1 2 3 4

1 2 3 4

: Wrap-up4
3 : Device I/O: I/O Initialization1

2 : Block Address Mapping

(c) nCache

Figure 4: Pipeline view of parallel writes by multiple threads on a shared file.

range lock. In this scenario, there are three CPU cores, and one
thread is running on each core. Each thread issues an I/O request
to a shared file simultaneously, but none of the three I/O requests
have overlapping ranges in the file. In the baseline F2FS (Figure 4a),
all three I/O requests are serialized because of the per-file mutex
lock in F2FS. Since the per-file mutex lock binds four phases into
a single critical section, none of the phases can be pipelined with
other threads.

On the other hand, F2FS with the range lock (Figure 4b) can
pipeline some I/O phases such as I/O initialization, device I/O, and
wrap-up phases because the range lock allows processing I/Os
to non-overlapping ranges simultaneously. However, I/O requests
are serialized again in the second phase (Block Address Mapping

phase). Therefore, only limited parallelism can be exploited from
the storage device. We have found that F2FS serializes the second
phase due to the tree nature of the file metadata (Node Tree) in the
page cache framework. We will elaborate on this in the following
section.

3.2 Cascading Tree Lock in Node Tree
When F2FS performs Block AddressMapping (Phase 2 in Section 3.1),
it traverses Node Tree in a top-down manner to retrieve correspond-
ing block addresses. While traversing the tree, F2FS holds two
consecutive mutex locks until the end of the current traversal. In
other words, whenever F2FS advances in Node Tree towards the leaf
node, it has to acquire a mutex lock on the next child node before
releasing the mutex lock of the current node. This is called the
cascading tree lock problem, which causes severe lock contention
when there are a large number of cores accessing Node Tree at the
same time. Because every node (such as inode, direct and indirect
nodes) in the tree requires a mutex lock to go down through that
node, all threads get serialized at any node of the tree. The most
trivial case of lock contention caused by cascading tree lock occurs
at the root of Node Tree. Consider three I/O threads trying to per-
form Block Address Mapping. In this case, all of the threads have to
acquire a mutex lock of the root node. Consequently, threads are
serialized at the start of the Block Address Mapping phase. What
makes the situation worse is that threads will compete again for
the next mutex lock when they advance to the same child node.

Figure 4c shows a perfect pipeline view of parallel writes by
three threads in the proposed nCache framework. They can access
Block Address Mapping phase concurrently. The detailed design and
implementation of nCache are described in the next section.

4 DESIGN AND IMPLEMENTATION
To solve lock contention in Block Address Mapping phase, we intro-
duce nCache. Specifically, nCache employs readers-write lock (RW
lock) for every node in Node Tree. The serialization in traversing
Node Tree originated from the mutex lock in each node in the
tree. With RW lock, nCache allows concurrent access in Node Tree

and fully exploits the internal parallelism of the high-performance
NVMe SSD device by performing all four steps of I/O requests in
parallel. Next, we provide a design overview of nCache followed by
a step-wise description of the nCache algorithm (Section 4.1 and
4.2). Furthermore, we identify and present the possible scenarios of
inconsistent updates and discuss the consistent update method of
nCache via double-checked locking (Section 4.3).

4.1 nCache Overview
Due to the cascading tree lock problem, Block Address Mapping phase
is serialized at the traversal of Node Tree. To solve this problem,
nCache uses RW lock for each node in the tree instead of mutex
lock. Unlike baseline F2FS, nCache acquires the reader lock first
for every advance in Node Tree traversal. Then, whenever a node
in the tree needs to be updated, or a new node needs to be added,
nCache releases the reader lock and reacquires the writer lock for
the update.

T₁ T₂ T₃
a

b c

d

Reader Lock

Writer Lock

Figure 5: nCache inode structure.

Figure 5 shows an example of how multiple threads concurrently
access in nCache. There are three threads accessing Node Tree. 𝑇1
and 𝑇2 want to retrieve block addresses of their own data blocks.
In the meantime, 𝑇3 wants to write at the end of the file. 𝑇1, 𝑇2, and
𝑇3 share the root of the tree in their traversal. The three threads
can read the root node concurrently because nCache always starts

Concurrent File Metadata Structure Using Readers-Writer Lock SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

by acquiring the reader lock (a). 𝑇1 and 𝑇2 share the child node
again. However, both threads can read it without blocking since
they are not modifying the node (b). Lastly, 𝑇1 and 𝑇2 retrieve
corresponding block addresses and continue to the Device I/O phase.
In the case of 𝑇3, it starts with the reader lock at the child node
of the root (c). Since 𝑇3 wants to write at the end of the file, new
nodes need to be added to Node Tree (d). Therefore, 𝑇3 releases
the reader lock and reacquires the writer lock on the current node.
After 𝑇3 is guaranteed exclusive accesses, new nodes are added
into the tree. 𝑇3 releases the writer lock as soon as the update is
completed to minimize the blocking time of other threads. Finally,
𝑇3 moves on to Device I/O phase.

With the range lock, nCache can provide finer-grained syn-
chronization to perform Block Address Mapping phase in parallel.
nCache blocks only when there is an update in Node Tree. In other
words, blocking occurs only when there is a thread entered with
the exclusive range lock. Since the range lock does not allow over-
lapping ranges to have exclusive access at the same time, blocking
between writer locks occurs only when two threads share the last
level of Node Tree except for the leaf node. In the case of blocking
between reader lock and writer lock, blocking can be minimized
since nCache only holds writer lock for a short period for adding
a link to the new nodes in the tree. Figure 4c shows how nCache

processes parallel I/O requests. As Block Address Mapping phase
can be performed in parallel, all four phases are now not serialized
and the parallel I/O is able to fully exploit the parallelism of the
storage device.

4.2 nCache Algorithm
To enable concurrent access to Node Tree while ensuring consistent
updates, we carefully designed the locking algorithm, as shown
in Algorithm 1. The algorithm determines the locking behavior in
Block Address Mapping phase. The nCache algorithm starts with
the Node ID of the root in Node Tree (Line 2). First of all, nCache
acquires the reader lock on the root node (Line 4). Then nCache

repeats the following steps until it reaches the last level of internal
nodes in Node Tree (Line 3 and 5). The first step is to read the Node
and find the next Node ID towards the child node based on the
offset in the I/O request. After that, it checks whether the next Node
ID exists (Line 6). If the Node ID does not exist and the I/O request
is a write operation, it means that the new node has to be added
to the tree (Line 7-16). Otherwise, nCache releases the reader lock
for the current Node ID and acquires the reader lock for the next
Node ID. Then, nCache repeats the loop by setting the next Node
ID as the current Node ID (Line 18-21).

Once nCache notices that Node Tree needs new nodes to be
added, nCache releases the reader lock on the current Node ID
and tries to acquire the writer lock instead (Line 7 and 8). After
acquiring the writer lock, nCache rechecks whether it still needs to
add a new node by searching the next Node ID in the current node
(Line 9). When nCache makes sure that the new node needs to
be added, the new Node ID is issued and connected to the current
node (Line 10-11). After connecting the new Node ID to the current
node, the next Node ID is set to the newly issued Node ID (Line 12).
If another competing thread has already added a new Node ID,
nCache simply uses it for the next Node ID (Line 14). In the end,

Algorithm 1: nCache Step-wise Algorithmic Flow
1 Algorithm nCache():

Data: CurrentNodeID; NextNodeID
2 let CurrentNodeID be the Node ID of the root node in

Node Tree;
3 letMaxLevel be the Maximum Level to retrieve the

block address;
4 acquire read lock(CurrentNodeID);
5 while CurrentNodeID.level() <= MaxLevel do
6 if GetChildNodeIDByOffset(Node, Offset) == NULL

and I/O is write then
7 release read lock(CurrentNodeID);
8 acquire write lock(CurrentNodeID);
9 if GetChildNodeIDByOffset(Node, Offset) ==

NULL then
10 Get New Node ID;
11 Record New Node ID to CurrentNodeID;
12 NextNodeID = New Node ID;
13 else
14 NextNodeID =

GetChildNodeIDByOffset(Node, Offset);
15 release write lock(CurrentNodeID);
16 acquire read lock(CurrentNodeID);
17 else
18 NextNodeID = GetChildNodeIDByOffset(Node,

Offset);
19 acquire read lock(NextNodeID);
20 release read lock(CurrentNodeID);
21 CurrentNodeID = NextNodeID;

22 Function GetChildNodeIDByOffset(𝑁𝑜𝑑𝑒 , 𝑂𝑓 𝑓 𝑠𝑒𝑡):
23 if NodeID is exists at Offset in Node then
24 return NodeID;
25 else
26 return NULL;

the writer lock on the current Node ID will be turned back to the
reader lock anywise (Line 15 and 16).

The reader lock is acquired for the next child node to continue
Node Tree traversal, and the reader lock on the current node is
released (Line 19 and 20). Finally, nCache moves on to the next
child node and repeats the loop from the first step (Line 21).

4.3 Consistency in Node Tree
When an I/O thread wants to add a new node to Node Tree, the
thread must acquire the writer lock on the current node after releas-
ing the reader lock. However, reacquiring the writer lock might lead
Node Tree to an inconsistent state. Figure 6a illustrates a possible
scenario of an inconsistent update. Consider two threads 𝑇1 and 𝑇2
writing a new data block in disjoint ranges (1). At first, the two
threads acquire the reader lock on the root node and check the Node
ID of the child node. Due to the reader lock, both of the threads

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea C. Lee et al.

Node Tree

Pagecache

T₁
Acquire

Write Lock

T₁

Node 5

Node 6

Node 6
Node 6 Node 7Node 5

Node 7
Node 6 Node 7Node 5

T₁ T₂

Node 5

Node 6 Node 7Node 5

T₂
Acquire

Write Lock

LBA 102 LBA 103Node 7
Node 6 Node 7Node 5

2 31 4

Inconsistent
State

T₂

Node 7

Node 5

Node 6 Node 7

Node 5

Node 6
T₁ T₂

(a) A possible inconsistent update scenario in the nCache.

Node Tree

Pagecache

T₁
Acquire

Write Lock

T₁

Node 5

Node 6

Node 6
Node 6 Node 7Node 5

Node 6
Node 6 Node 7Node 5

T₁ T₂

Node 5

Node 6 Node 7Node 5

T₂
Fail to Acquire

Write Lock

LBA 102 LBA 103Node 6
Node 6 Node 7Node 5

2 31 4

Consistent
State

Node 5

Node 6
T₁ T₂

T₂

Node 5

Node 6

(b) Consistent update with the Double-Checked Lock in the nCache.

Figure 6: Consistent update with the Double-Checked Lock in the nCache.

notice that there is no child node to advance and then decide to
add a new node simultaneously. Thread 𝑇1 and 𝑇2 now compete to
get the writer lock for the current node. Let’s assume 𝑇1 gets the
lock first in this example (2). 𝑇1 creates a new node (Node 6) and
continues traversing the tree. After 𝑇1 releases the write lock, 𝑇2
gets the write lock. 𝑇2 creates a new node (Node 7) and overwrites
the link to a node 𝑇1 created (3). As a result, Node 6 becomes
unreachable, and the tree falls into an inconsistent state (4).

To provide consistent updates under the scenario mentioned
above, nCache applies double-checked locking [19, 22, 23] in Node

Tree traversal. Double-checked locking tests the lock condition first
and acquires the lock if the condition is satisfied. After that, the
lock condition is tested one more time whether the condition is
still valid or not. By checking the condition twice before and after
lock acquisition, nCache can avoid inconsistent updates. Figure 6b
shows nCache with double-checked locking. As an example of an
inconsistent scenario, consider two threads writing the file (1).
When 𝑇1 acquires the writer lock, it checks the existence of the
child node again, and it creates a new node because the condition
is valid (2). In 𝑇2’s turn, it also tests the condition once more.
However, unlike in the inconsistent scenario, 𝑇2 notices the child
node 𝑇1 already created and releases the write lock (3). Finally,
𝑇2 safely traverses through Node 6 without making the Node Tree
inconsistent (3).

5 EVALUATION
This section describes the experimental setup and analyzes the
results of scalability experiments in F2FS with nCache.

5.1 Evaluation Setup
We performed all experiments on an eight-socket, 120-core (Intel
Xeon E7-8870 v2 [7]) manycore server equipped with 740 GB of

memory and three kinds of NVMe SSDs; Samsung 970 EVO [21],
Intel SSD 750 [9], and Intel Optane 900P [8]. The detailed SSD
characteristics are shown in Table 1.

Implementation: We implemented nCache in F2FS in Linux
kernel version 4.14. For range lock implementation, we used both
an interval tree-based range lock [16] and an atomic operation-
based range lock [12]. According to the design of the range lock,
the atomic operation-based range lock had less lock contention
than the interval tree-based design. For evaluations, we compared
the following implementations:

• F2FS: Baseline F2FS.
• F2FSRL: F2FS with interval tree-based range lock.
• F2FSAT: F2FS with atomic operation-based range lock.
• F2FSRL+NC: F2FSRL with nCache.
• F2FSAT+NC: F2FSAT with nCache.

Workloads: We evaluated nCache using both synthetic and re-
alistic workloads. For synthetic workloads, we used the FxMark [20]
file system scalability benchmark. Among various workloads in
FxMark, we selected DWOM and DRBM workloads to evaluate
the benefits of nCache for parallel shared I/O workloads. Both
workloads simulate a shared file I/O scenario. In the DWOM work-
load, each thread bound to a physical core writes 4 KB of data to
a private region on a shared file. Since every private region does
not overlap, it mimics the ideal parallel shared file write case. The
DRBM workload works the same as the DWOM workload, but it
reads 4 KB of data from the private region. In FxMark, each private

Table 1: Performance characteristics of various SSDs.

SSD IOPS Memory Type
Samsung 970 EVO [21] 200K 350K NAND Flash Memory

Intel SSD 750 [9] 430K 230K NAND Flash Memory
Intel Optane 900P [8] 550K 550K Optane Memory

Concurrent File Metadata Structure Using Readers-Writer Lock SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

F2FS AT+NC F2FS RL+NC F2FS AT F2FS RL F2FS

Th
ro

ug
hp

ut
 (K

op
s)

0
100
200
300
400
500
600
700

of Cores
0 20 40 60 80 100 120

(a) Samsung 970 EVO

F2FS AT+NC F2FS RL+NC F2FS AT F2FS RL F2FS

Th
ro

ug
hp

ut
 (K

op
s)

0
50

100
150
200
250
300

of Cores
0 20 40 60 80 100 120

(b) Intel SSD 750

F2FS AT+NC F2FS RL+NC F2FS AT F2FS RL F2FS

Th
ro

ug
hp

ut
 (K

op
s)

0

100

200

300

400
500

of Cores
0 20 40 60 80 100 120

(c) Intel Optane 900P

Figure 7: DWOM results for DirectIO.

region is 8 MB, which means each thread issues I/O requests to the
file with 8 MB strides. We measured I/O throughput by varying
numbers of cores using both DirectIO and BufferedIO modes.

For realistic workloads, we used HACC-IO [26], which is an I/O
benchmark for HACC [6]. HACC is a large cosmological simula-
tion framework in the HPC environment. HACC-IO emulates the
checkpoint phase of HACC. In HACC-IO, each MPI process writes
simulation data to a different partition of a shared checkpoint file
at the same time. We modified HACC-IO to use DirectIO mode to
show how much nCache can saturate the storage device through-
put. Another realistic workload we used is RocksDB [4]. RocksDB
is a key-value store optimized for fast SSD devices and is widely em-
ployed as a storage engine in various databases and object storage
systems [1]. We measured the throughput and latency by varying
the number of cores issuing key-value operations to RocksDB. We
used the readrandomwriterandom workload in db_bench, which is
the benchmark shipped with RocksDB. In this workload, each core
gets and puts random key-value pairs to RocksDB in a ratio of 9:1.
We used RocksDB v6.14.5, and the rest of the tuning parameters of
RocksDB were left as default.

5.2 Synthetic Workload Results
In this section, we evaluate and analyze the performance of Direct
I/O and Buffered I/O for DOWM and DRBM workloads.

F2FS AT+NC (4KB)

F2FS RL+NC (4KB)

F2FS AT (4KB)

F2FS RL (4KB)

F2FS (4KB) F2FS

T
hr

ou
gh

pu
t (

K
op

s)

0

100

200

300

400

of Cores

0 20 40 60 80 100 120

(a) Samsung 970 EVO

F2FS AT+NC (4KB)

F2FS RL+NC (4KB)

F2FS AT (4KB)

F2FS RL (4KB)

F2FS (4KB) F2FS

T
hr

ou
gh

pu
t (

K
op

s)

0

100

200

300

400

500

of Cores

0 20 40 60 80 100 120

(b) Intel SSD 750

F2FS AT+NC (4KB)

F2FS RL+NC (4KB)

F2FS AT (4KB)

F2FS RL (4KB)

F2FS (4KB) F2FS

T
hr

ou
gh

pu
t (

K
op

s)

0
100
200
300
400
500
600
700

of Cores

0 20 40 60 80 100 120

(c) Intel Optane 900P

Figure 8: DRBM results for DirectIO. Specifically, both 8 MB
and 4 KB stride sizes of the workloads were evaluated.
5.2.1 Shared File I/OWrite (DWOM) using DirectIO. Figure 7 shows
the results of parallel writes on a shared file using DirectIO. Due
to inode mutex, F2FS does not scale and has the same throughput
regardless of the number of cores in all three SSDs. On the other
hand, all configurations with range locks show some level of scal-
ability. However, the throughput of F2FSRL and F2FSAT collapses
as the number of cores increases after a certain number of cores.
With the range lock, only Samsung 970 EVO showed a device peak
throughput at 15 cores but failed to sustain it (Figure 7a). As wemen-
tioned in the early part of this paper, the maximum performance
and parallelism of the fast NVMe device cannot be exploited solely
by the range lock. F2FSRL+NC and F2FSAT+NC outperform other con-
figurations. Specifically, F2FSAT+NC saturated the maximum device
throughput in all storage devices, and the performance was sus-
tained until 120 cores. Note that F2FSRL+NC had lower throughput
compared to F2FSAT+NC due to the lock contention in the inter-
val tree of F2FSRL+NC. While F2FSAT+NC had the best performance
among configurations in all SSDs, their scalability showed slightly
different trends (F2FSAT+NC in Figure 7a, 7b, and 7c). We claim that
this is because of the device’s internal characteristics. For example,
the peak performance of NAND flash-based devices can vary due
to device-specific parameters such as NAND page size, internal
garbage collection policy, or internal DRAM buffer.

5.2.2 Shared File I/O Read (DRBM) using DirectIO. Figure 8 shows
the results of parallel reads on a shared file using Direct IO mode.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea C. Lee et al.

F2FS AT+NC F2FS RL+NC F2FS AT F2FS RL F2FS

Th
ro

ug
hp

ut
 (K

op
s)

0

500

1000

1500

2000

of Cores
0 20 40 60 80 100 120

Figure 9: DWOM results for BufferedIO (Samsung 970 EVO).

Parallel reads are safe to concurrently traverse the Node Tree be-
cause they do not incur updates in Node Tree. However, in the base-
line implementation, parallel reads are serialized at shared nodes in
their Node Tree traversal path due to the cascading tree lock problem,
as mentioned in Section 3.2. On the other hand, nCache allows
concurrent reads traversing the Node Tree simultaneously because
they share some node in the path using RW locks. However, with
the DRBM workload, when I/O requests have an 8 MB stride, the
SSD device throughput is largely degraded. In Figure 8a, 8b, and 8c,
F2FS shows the throughput of the baseline configuration with the
8 MB stride of the workload. Basically, this low device throughput
limits the performance and scalability of the baseline F2FS. With
this workload (8 MB stride), none of the implementations showed
a different trend from baseline performance. Thus, in the figures,
we only show the baseline throughput since all configurations are
bounded by low device performance.

To further explore the manycore scalability, we reduced the
size of the private region to 4 KB (4 KB stride), which is the best
case for the SSD, to identify the maximal throughput that nCache
can sustain. Note that in the legend of Figure 8a, 8b, and 8c, 4 KB
in parentheses means that the stride size is 4 KB. On the other
hand, F2FS without parentheses means that the stride size is 8 KB.
In Figure 8a and 8b, all configurations, including F2FS(4KB), have
better throughput compared to F2FS until 30 cores. However, only
F2FS

AT+NC (4KB)
achieves the maximal throughput of the device

due to better concurrency in the file metadata by nCache. Note
that the interval tree-based and atomic operation-based range lock
designs show performance differences when nCache is applied.
This performance gap between F2FS

RL+NC (4KB)
and F2FS

AT+NC (4KB)

shows that the concurrent access in the file metadata is inevitable
to achieve scalability in the parallel I/O workload.

5.2.3 Shared File I/O Write (DWOM) using BufferedIO. We also
evaluated the performance of nCache for the DWOM workload in
the buffered I/O mode. Since all three SSDs display similar perfor-
mance trends, we present results using only Samsung 970 EVO. In
BufferedIO, F2FS has to acquire inode mutex to perform file write,
the same as with DirectIO. As shown in Figure 9, range lock im-
plementations outperform in the first 21 cores compared to F2FS.
However, all implementations except F2FSAT+NC start to collapse
at two cores, and the throughput of F2FSAT+NC also collapses at
15 cores. After that, only F2FSAT+NC sustains higher throughput
than other implementations. The reason for the poor scalability in
BufferedIO is a bit different from the case of DirectIO. In BufferedIO,
the I/O to the storage device rarely happens because the page cache
holds the user data in memory. Elimination of the I/O latency from
the storage device imposes more contention on the range lock and

F2FS AT+NC F2FS RL+NC F2FS AT F2FS RL F2FS

Th
ro

ug
hp

ut
 (M

op
s)

0

100

200

300

400

of Cores
0 20 40 60 80 100 120

Figure 10: DRBM results for BufferedIO (Samsung 970 EVO).

RW lock in nCache than in the case of DirectIO mode. Additionally,
F2FS has to reserve block addresses for future data flush from the
page cache. This leads to more frequent node creations in Node Tree,
and consequently, free Node IDs are consumed much faster. We ob-
served that performance degradation is because of the serialization
at the management of free Node ID.

5.2.4 Shared File I/O Read (DRBM) using BufferedIO. Figure 10
shows the throughput of parallel reads to a shared file in the Buffere-
dIO mode. In the DRBM workload, all implementations scale lin-
early until 120 cores. This is because read requests get the data by
the page cache hit in most cases. When the up-to-date data is found
in the page cache, the file system does not involve any of Block
Address Mapping or Device I/O phases.

5.3 Realistic Workload Results
In this section, we evaluate and analyze the performance of realis-
tic workloads, including the HPC scientific application (HACC-IO
benchmark) and database application.

5.3.1 Scientific Application. Figure 11 shows the results of HACC-
IO [26] using DirectIO mode. We fixed the size of the checkpoint
as 10 GB and measured throughput by varying the number of MPI
processes. Because of the per-file mutex lock in the file system,
the performance of F2FS does not scale at all. On the other hand,
F2FSRL, F2FSAT, F2FSRL+NC, and F2FSAT+NC showed improvement
in throughput. F2FSRL and F2FSAT exhibited similar trends due to
the same reason from the DWOM workload evaluation results us-
ing DirectIO. F2FSAT+NC had higher throughput compared to other
implementations. Specifically, in Figure 11a (Samsung 970 EVO),
F2FSAT+NC showed 4.1x higher throughput compared to F2FSAT at
120 cores. Nevertheless, F2FSAT+NC had higher performance varia-
tion than F2FSRL, F2FSAT, and F2FSRL+NC. In contrast, in Figure 11b
(Intel 750 SSD) and 11c (Intel Optane 900P), they show little per-
formance variation compared to Samsung 970 EVO. To find out
the reason behind the high deviation of F2FSAT+NC with Samsung
970 EVO, we performed several experiments with different MPI
process mappings. We observed that F2FSAT+NC sustains a peak
throughput of ≈1400 MB/s, as shown in Figure 11a, when we bind
cores from the first socket in order. In a Non-Uniform Memory
Access (NUMA) architecture, both memory latency and bandwidth
are degraded when a CPU accesses memory attached to a remote
socket. We speculate that compared to other SSDs, the internal
device characteristics of the Samsung 970 EVO are more affected
by the characteristics of NUMA.

5.3.2 Database Application. Figure 12 shows the throughput and
latency comparison of RocksDB using Intel Optane SSD 900P for

Concurrent File Metadata Structure Using Readers-Writer Lock SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

F2FS AT+NC F2FS RL+NC F2FS AT F2FS RL F2FS

Th
ro

ug
hp

ut
 (M

B/
s)

0

500

1000

1500

2000

of Cores
0 20 40 60 80 100 120

(a) Samsung 970 EVO

F2FS AT+NC F2FS RL+NC F2FS AT F2FS RL F2FS

Th
ro

ug
hp

ut
 (M

B/
s)

0
200
400
600
800

1000
1200

of Cores
0 20 40 60 80 100 120

(b) Intel SSD 750

F2FS AT+NC F2FS RL+NC F2FS AT F2FS RL F2FS

Th
ro

ug
hp

ut
 (M

B/
s)

0

500

1000

1500

2000

2500

of Cores
0 20 40 60 80 100 120

(c) Intel Optane 900P

Figure 11: Throughput of HACC-IO N-to-1 Checkpoint.

F2FS and F2FSAT+NC. Each core produces 1 million operations with
16 bytes key and 100 bytes value. RocksDB is set to use DirectIO
in file I/O. In Figure 12, F2FSAT+NC shows higher throughput and
lower latency on average compared to F2FS. In Figure 12a, the
performance gain in F2FSAT+NC compared to F2FS is mainly due
to the improvement of file system lock contention by nCache.
However, F2FSAT+NC fails to scale throughput with respect to the
increased number of cores. This is because nCache has reduced the
file system bottleneck as much as possible, but it is assumed that
there is still a bottleneck in the DB application. Figure 12b shows a
similar observation. The latency improvement of F2FSAT+NC over
F2FS becomes more considerable for a large number of cores, but
F2FSAT+NC fails to scale the latency due to the same reason from
the throughput comparison.

6 RELATEDWORK
There have been several studies on improving I/O performance
by optimizing lock in HPC and distributed computing systems. In
particular, a range lock allows multiple writes mutually to avoid
serialization and reduce wait and delay in parallel I/O scenarios
[2, 18]. Ching et al. [2] proposed a distributed lock manager for a
file system with a byte-range locking scheme to optimize multiple
write operations while ensuring consistency and atomicity for non-
overlapped accesses to a shared file. Lin et al. [18] integrated a
byte-range locking scheme into a cloud controller that manages
concurrent accesses to non-overlapped regions of a shared file in

F2FS AT+NC
F2FS

Th
ro

ug
hp

ut
 (K

O
PS

)

0

100

200

300

400

of Cores
15 30 60 120

(a) RocksDB Throughput

F2FS AT+NC
F2FS

La
te

nc
y

(m
ic

ro
se

c.
)

0

200

400

600
800

of Cores
15 30 60 120

(b) RocksDB Latency

Figure 12: Performance Evaluation usingRocksDB (Intel Op-
tane 900P).
a distributed system. Both studies offer parallel I/Os of multiple
threads simultaneously that access a shared file by using the range
lock scheme while maintaining consistency. The parallel distributed
file systems used in HPC such as Lustre [24] and Gluster [5] are
implemented using range locks to improve parallel I/Os speed while
preserving consistency and atomicity.

Recently, there has been an attempt to apply a range lock to
the Linux native file system [12, 16]. In particular, Kim et al. [12]
proposed an atomic operation-based range lock to minimize the
overhead of implementing an interval tree-based range lock and
applied it to a non-volatile memory-based file system (NOVA [27]).
Also, inspired by an atomic operation-based range lock [12], Kogan
et al. [14] proposed a scalable range lock that can be applied to
general kernel memory structures. In this study, we found that
there is a limit to increasing scalability in the Linux native file
system by applying a range lock. Specifically, a range lock allows
multiple threads to perform file data I/O in parallel when accessing
a single shared file, but we claim that scalability is limited due to a
bottleneck in the file metadata structure, not file data I/O.

7 CONCLUSION
Linux file systems have a scalability bottleneck when multiple
threads perform I/O on a shared file. File I/O consists of file data
I/O and file metadata I/O. File data I/O concurrency is provided by
applying a range lock to the file system. However, even a file system
employing a range lock fails to provide file metadata I/O concur-
rency. The main cause of the scalability bottleneck is the lack of
concurrency in the file metadata structure. To mitigate this problem,
we designed nCache, a novel file metadata cache framework that ex-
ploits the readers-write lock on a tree of the file metadata structure
to allow concurrent accesses. Specifically, we implemented nCache
in F2FS in Linux kernel version 4.14 and evaluated it with nCache

on a 120-core manycore machine equipped with high-performance
NVMe SSDs. Extensive evaluations showed that nCache saturates
the maximum available I/O bandwidth of high-performance SSD
devices while mitigating the file metadata structure bottleneck of
F2FS. Moreover, from our investigation of various Linux file system
architectures, we expect that nCache can be easily employed in
other file systems due to the similarity of the inode structure.

ACKNOWLEDGMENTS
This work was supported by Institute of Information & Commu-
nications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No. 2014-3-00035, Research on
High Performance and Scalable Manycore Operating System).

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea C. Lee et al.

REFERENCES
[1] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020. Characteriz-

ing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook.
In Proceedings of the 18th USENIX Conference on File and Storage Technologies

(FAST 20). 209–223.
[2] Avery Ching, Wei-keng Liao, Alok Choudhary, Robert Ross, and Lee Ward. 2007.

Noncontiguous Locking Techniques for Parallel File Systems. In Proceedings of

the 2007 ACM/IEEE Conference on Supercomputing. 1–12.
[3] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry Standard API

for Shared-Memory Programming. IEEE Computational Science and Engineering

5, 1 (1998), 46–55.
[4] Facebook. 2019. RocksDB. https://rocksdb.org/
[5] Gluster. 2019. Gluster File System. http://www.gluster.org/
[6] Salman Habib, Adrian Pope, Hal Finkel, Nicholas Frontiere, Katrin Heitmann,

David Daniel, Patricia Fasel, Vitali Morozov, George Zagaris, Tom Peterka, et al.
2016. HACC: Simulating Sky Surveys on State-of-the-Art Supercomputing Ar-
chitectures. New Astronomy 42 (2016), 49–65.

[7] Intel. 2014. Intel Xeon Processor E7-8870 v2. https:
//ark.intel.com/content/www/us/en/ark/products/75255/
intel-xeon-processor-e7-8870-v2-30m-cache-2-30-ghz.html

[8] Intel. 2019. Intel Optane 900P Series. https:
//ark.intel.com/content/www/us/en/ark/products/123628/
intel-optane-ssd-900p-series-280gb-1-2-height-pcie-x4-20nm-3d-xpoint.html

[9] Intel. 2019. Intel SSD 750 Series. https://ark.intel.com/content/www/us/en/ark/
products/86742/intel-ssd-750-series-400gb-2-5in-pcie-3-0-20nm-mlc.html

[10] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and
Babak Falsafi. 2009. Shore-MT: A Scalable Storage Manager for the Multicore
Era. In Proceedings of the 12th International Conference on Extending Database

Technology (EDBT). 24–35.
[11] Awais Khan, Taeuk Kim, Hyunki Byun, and Youngjae Kim. 2019. SciSpace:

A Scientific Collaboration Workspace for Geo-Distributed HPC Data Centers.
Future Generation Computer Systems 101 (2019), 398 – 409.

[12] June-Hyung Kim, Jangwoong Kim, Hyeongu Kang, Changgyu Lee, Sungyong
Park, and Youngjae Kim. 2019. pNOVA: Optimizing Shared File I/O Operations of
NVM File System on Manycore Servers. In Proceedings of the 10th ACM SIGOPS

Asia-Pacific Workshop on Systems (APSys). 1–7.
[13] Hideaki Kimura. 2015. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM.

In Proceedings of the ACM SIGMOD International Conference on Management of

Data (SIGMOD). 691–706.
[14] Alex Kogan, Dave Dice, and Shady Issa. 2020. Scalable Range Locks for Scalable

Address Spaces and Beyond. In Proceedings of the 15th European Conference on

Computer Systems (EuroSys ’20). 1–15.
[15] Changman Lee, Dongho Sim, Joo Young Hwang, and Sangyeun Cho. 2015. F2FS:

A New File System for Flash Storage. In Proceedings of the 13th USENIX Conference

on File and Storage Technologies (FAST). 273–286.
[16] Chang-Gyu Lee, Hyunki Byun, Sunghyun Noh, Hyeongu Kang, and Youngjae

Kim. 2019. Write Optimization of Log-Structured Flash File System for Parallel
I/O on Manycore Servers. In Proceedings of the 12th ACM International Conference

on Systems and Storage (SYSTOR). 21–32.
[17] Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William

Gropp, Robert Latham, Andrew Siegel, Brad Gallagher, and Michael Zingale. 2003.
Parallel netCDF: A High-Performance Scientific I/O Interface. In Proceedings of

the International Conference for High Performance Computing, Networking, Storage

and Analysis (SC). 39–48.
[18] Yun Lin and Richard Sharpe. 2017. Using Byte-Range Locks to Manage Multiple

Concurrent Accesses to A File in A Distributed Filesystem. US Patent 9,792,294.
[19] Scott Meyers and Andrei Alexandrescu. 2004. C++ and the Perils of Double-

Checked Locking. Dr. Dobb’s Journal (2004), 46–49.
[20] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and Taesoo Kim. 2016. Un-

derstanding Manycore Scalability of File Systems. In Proceedings of the USENIX

Conference on Usenix Annual Technical Conference (ATC). 71–85.
[21] Samsung. 2020. Samsung 970 EVO Series SSD. https://www.samsung.com/us/

business/products/computing/ssd/client/970-evo-plus-250gb-mz-v7s250b-am/
[22] Douglas C Schmidt and Tim Harrison. 1997. Double-Checked Locking. Pattern

languages of program design 3 (1997), 363–375.
[23] Douglas C Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. 2013.

Pattern-Oriented Software Architecture, Patterns for Concurrent and Networked

Objects. Vol. 2. John Wiley & Sons.
[24] Philip Schwan. 2003. Lustre: Building a File System for 1000-node Clusters. In

Proceedings of the Linux symposium. 380–386.
[25] Min Si, Antonio J Peña, Pavan Balaji, Masamichi Takagi, and Yutaka Ishikawa.

2014. MT-MPI: Multithreaded MPI for Many-Core Environments. In Proceedings

of the 28th ACM International Conference on Supercomputing (ICS). 125–134.
[26] Venkatram Vishwanath. 2018. HACC I/O. https://github.com/glennklockwood/

hacc-io
[27] Jian Xu and Steven Swanson. 2016. NOVA: A Log-Structured File System for

Hybrid Volatile/Non-volatile Main Memories. In Proceedings of the 14th USENIX

Conference on File and Storage Technologies (FAST). 323–338.
[28] Jian Yang, Juno Kim,Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson.

2020. An Empirical Guide to the Behavior and Use of Scalable Persistent Memory.
In Proceedings of the 18th USENIX Conference on File and Storage Technologies

(FAST). 169–182.
[29] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael

Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Control
with One Thousand Cores. Proceedings of the VLDB Endowment 8, 3 (2014),
209–220.

[30] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. TicToc:
Time Traveling Optimistic Concurrency Control. In Proceedings of the 2016 ACM

SIGMOD International Conference on Management of Data (SIGMOD). 1629–1642.
[31] Yongen Yu, Douglas H Rudd, Zhiling Lan, Nickolay Y Gnedin, Andrey Kravtsov,

and Jingjin Wu. 2012. Improving Parallel IO Performance of Cell-based AMR
Cosmology Applications. In Proceedings of the 26th IEEE International Conference

on Parallel and Distributed Processing Symposium (IPDPS). 933–944.

https://rocksdb.org/
http://www.gluster.org/
https://ark.intel.com/content/www/us/en/ark/products/75255/intel-xeon-processor-e7-8870-v2-30m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75255/intel-xeon-processor-e7-8870-v2-30m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75255/intel-xeon-processor-e7-8870-v2-30m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123628/intel-optane-ssd-900p-series-280gb-1-2-height-pcie-x4-20nm-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/123628/intel-optane-ssd-900p-series-280gb-1-2-height-pcie-x4-20nm-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/123628/intel-optane-ssd-900p-series-280gb-1-2-height-pcie-x4-20nm-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/86742/intel-ssd-750-series-400gb-2-5in-pcie-3-0-20nm-mlc.html
https://ark.intel.com/content/www/us/en/ark/products/86742/intel-ssd-750-series-400gb-2-5in-pcie-3-0-20nm-mlc.html
https://www.samsung.com/us/business/products/computing/ssd/client/970-evo-plus-250gb-mz-v7s250b-am/
https://www.samsung.com/us/business/products/computing/ssd/client/970-evo-plus-250gb-mz-v7s250b-am/
https://github.com/glennklockwood/hacc-io
https://github.com/glennklockwood/hacc-io

	Abstract
	1 Introduction
	2 Background
	2.1 F2FS File System
	2.2 Node Tree and NAT
	2.3 Range Lock

	3 Problem Statement
	3.1 Lack of Concurrency on File Metadata
	3.2 Cascading Tree Lock in Node Tree

	4 Design and Implementation
	4.1 nCache Overview
	4.2 nCache Algorithm
	4.3 Consistency in Node Tree

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Synthetic Workload Results
	5.3 Realistic Workload Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

