
iLSM-SSD: An Intelligent LSM-tree based Key-Value SSD for Data Analytics

Chang-Gyu Lee†, Hyeongu Kang†, Donggyu Park†, Sungyong Park†, Youngjae Kim†,∗

Jungki Noh‡, Woosuk Chung‡, Kyoung Park‡
†Sogang University, Seoul, Republic of Korea, ‡SK hynix

{changgyu, hyeongu, dgpark, parksy, youkim}@sogang.ac.kr, {jungki.noh, woosuk.chung, kyoung.park}@sk.com

Abstract—Several key-value stores such as RocksDB and
MongoDB are implemented on the file system using the Log-
Structured Merge-Tree (LSM-tree). The LSM-tree involves
high compaction overhead. To minimize this overhead, Wis-
cKey, the state-of-the-art LSM-tree, separates key and value,
appends the value to the Value Log file, and LSM-tree
manages only the key and Value Log offset. This minimizes
the compaction overhead by reducing the number of SSTables
managed by the LSM-tree. However, WiscKey still has a
high I/O stack overhead that must go through the OS file
system and block-layer. Therefore, this paper proposes iLSM-
SSD that implements WiscKey in SSD and supports near-
data processing. iLSM-SSD has the following features: (i)
iLSM-SSD implements a key-value separation based LSM-tree
in a limited memory space inside the SSD. (ii) The Value
Log offset update management overhead incurred during the
Value Log cleaning has a significant performance impact on
CPU and memory-constrained SSD environments. To minimize
this overhead, iLSM-SSD implements Scattered Logging, which
reuses invalidated Value Log pages on the Value Log. (iii) iLSM-
SSD manages the data layout internally. This enables iLSM-
SSD to eliminate the need for file system interactions to obtain
the data layout for in-storage processing on traditional block-
interface-based SSDs. We prototyped the iLSM-SSD on the
Cosmos+ OpenSSD platform in a Linux environment. Extensive
evaluations with synthetic benchmarks have shown that the
PUT performance of iLSM-SSD is 1.6-4 times higher than that
of WiscKey implemented in RocksDB.

Keywords-Log-Structured Merge-Tree, Key-Value Store,
Solid-State Drive

I. INTRODUCTION

A key-value store is a database that manages key-value

pairs. Due to its simple key-value interface to access the

value using the key, the key-value store has been widely

employed in many modern applications [1]–[9]. For exam-

ple, it can be used as a building block in applications, such

as object stores in distributed object storage systems [1],

database storage engines [2], [3], [5], [6], and caching

systems [7]–[9] for big data storage systems. It can also be

directly employed as distributed or local key-value database

systems [10]–[14]. In particular, local key-value stores such

as RocksDB [5] and MongoDB [6] are implemented using

a Log-Structured Merge-Tree (LSM-tree) [15] on top of the

OS file system.

∗Corresponding author: Youngjae Kim

Figure 1. Comparison of latency breakdown of system calls for RocksDB,
WiscKey, and NVMe SSD. The NVMe SSD was measured while issuing
4 KB writes directly on the NVMe SSD. Detail testbed configurations are
presented in Table I, II.

The user can insert a key-value pair into the key-value

store using a PUT request. In the key-value store using the

LSM-tree, key-value pairs inserted are temporarily stored

in the MemTable, an in-memory data structure. Once the

MemTable reaches a certain threshold in size, it is flushed

into persistent media in the form of Sorted String Table

(SSTable), which is an immutable file. Since the SSTable is

immutable, updating or deleting keys is handled as a PUT

request with a new value or a special value indicating that

the key has been deleted. Therefore, the old keys remain in

the old SSTables. The user can retrieve the corresponding

value of the key using a GET request. The key-value store

using the LSM-tree first searches the key in the MemTable.

If successful, it returns its value. Otherwise, it will search

it in SSTables. Besides, the LSM-tree performs compaction.

Compaction is the process of merging SSTables and sorting

them to create new SSTables. The obsolete keys can only

be reclaimed only in the compaction process because the

SSTable is immutable. However, the compaction process

incurs high write amplification because key-value pairs need

to be re-written multiple times. This increases I/O traffic

in the file system, which is a major cause of performance

degradation.

WiscKey [16] has solved the aforementioned write ampli-
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fication problem that occurs during the compaction of LSM-

tree by using the key-value separation. In WiscKey, values

are appended to the Value Log, and only the key and its

Value Log offset are stored in the LSM-tree. This key-value

separation significantly reduces the total size of SSTables

and alleviates the write amplification problem that occurs

during the compaction process.

However, WiscKey does not eliminate the I/O stack

overhead because it is implemented in user-space and runs

on top of the OS file system. In particular, when the

strong consistency is to be assured, the key-value pairs

must be persisted to the Write-Ahead-Log (WAL) or Value

Log immediately on the SSD for every PUT request using

system calls such as fsync and fdatasync. Therefore, fsync
or fdatasync latencies of the file system directly affect the

performance of the key-value store.

To confirm this overhead, we implemented the key-value

separation technique from WiscKey in RocksDB (WiscKey).

And, we compared it to the default RocksDB without the

key-value separation (RocksDB). For comparative evalua-

tion, we measured the average latency of RocksDB and

WiscKey for 1 million unique 4 KB key-value PUT requests.

To guarantee strong consistency, fdatasync is called for

every 4 KB value PUT request, to persist the Write-Ahead-

Log (WAL) in RocksDB and the Value Log in WiscKey.

Figure 1 shows the time-break down of PUT requests by

separating block-level I/O time from file system overhead.

WiscKey shows a latency of 0.72 times lower than the

default RocksDB by reducing write traffic due to the key-

value separation. However, WiscKey still shows about 2.5

times higher latency compared to the conventional block-

based NVMe SSD. Thus, in this paper, we attempt to build

a Key-Value SSD which offers a key-value interface and

implements the LSM-tree using the key-value separation

within the SSD.

When analyzing the data stored in the key-value store,

the user performs the following procedure – i) the value

data of the key is loaded into the user-level memory via a

GET request to the key-value store, and ii) the user uses the

host machine’s CPU and memory to run the data analysis

kernel for the data. This involves data movement between

the host and the SSD. To minimize this data movement

cost between the host and the SSD, there have been several

recent studies on near-data processing that run an analysis

kernel near data in SSD [17]–[19]. These studies are based

on block device interfaces such as NVMe SSDs for near-

data processing. Before executing the data analysis kernel in

the SSD, applications such as near-data processing analysis

frameworks need to find the data layout of the file to be

analyzed through the file system. This still entails file system

stack overhead. On the other hand, key-value SSDs keep the

data layout of the value inside the SSD, which eliminates

the cost for finding the data layout from the file system.

This paper proposes iLSM-SSD, an SSD that implements

the LSM-tree with the key-value separation and the in-

storage processing framework in the SSD. iLSM-SSD thus

enables near-data processing for data analysis in the SSD.

The iLSM-SSD is designed and implemented with the fol-

lowing design challenges:

• Storage protocol for key-value interface. The existing

SATA and NVMe protocols are intended for block-based

storage devices. The key-value SSD requires a new proto-

col definition to communicate with devices that are key-

value interfaces. For this, we extended the NVMe protocol

and support key-value operations for iLSM-SSD.

• NAND flash characteristic. As the LSM-tree is imple-

mented in the SSD, SSTables are to be written directly

on the NAND flash. Since a NAND page requires to be

erased for re-writing, the partial update consumes limited

Program/Erase cycle of the NAND flash and is also

critical in performance. As the Value Log offset is inserted

to the SSTable in the LSM-tree using the key-value

separation technique, the SSTable can be maintained in

a small and fine-grained manner. Therefore, the SSTable

can be easily aligned to the NAND page size. Thus, when

implementing the LSM-tree, the key-value separation will

benefit from it.

• Constrained memory resource. The internal memory

capacity of an SSD is highly limited compared to the host.

In this respect, we should ensure that MemTable, LSM-

tree metadata and memory space necessary for Value

Log cleaning are carefully fit in a limited amount of

memory. We analyzed the memory space overhead of

the MemTable and LSM-tree metadata for iLSM-SSD and

designed an efficient free space management technique

using the existing FTL mapping table for efficient Value

Log cleaning.

• Near-data processing capability. Near-data processing

enables to utilize computational resources in the SSD

to reduce the data movement cost between the host and

the SSD. However, it does not eliminate the file system

interaction overhead. The user application still requires

to import the file layout to get block information by

interacting with the file system, then inform the SSD of

the blocks on which the analysis kernel operates. In iLSM-
SSD, the layout of the data is managed by the LSM-tree

in the SSD. Thus, the file system interaction overhead

can be eliminated. To support this, we design a near-data

processing framework for iLSM-SSD.

We implemented iLSM-SSD on the Cosmos+ OpenSSD

Platform [20], which is the development board for imple-

menting SSD device. To show the effectiveness of iLSM-
SSD, we compared iLSM-SSD against WiscKey. From ex-

tensive evaluations with synthetic benchmarks, we observed

that PUT performance is 1.6-4 times higher than WiscKey,

but GET performance is significantly lower. This low per-

formance of the iLSM-SSD for the GET workload is due
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to the limited caching effect of the SSD. However, GET

performance can be improved if user-level caching or kernel-

level caching is implemented. We also witnessed the file

system interaction overhead to find out the data layout of a

file in block-based SSDs to support near-data processing is

significantly high, whereas iLSM-SSD eliminates such over-

head, especially when there is a search hit at the MemTable.

Even in the worst case, its performance is comparable to a

block-based SSD with the file system.

II. BACKGROUND

A. Log-Structured Merge-Tree and Key-Value Separation

Log-Structured Merge-Tree (LSM-tree) is a data structure

widely employed for the key-value store. LSM-tree delivers

high throughput under write-intensive workloads by gen-

erating sequential writes from user’s put requests through

buffering and batching. LSM-tree consists of MemTable

in volatile memory and immutable SSTable in persistent

storage. MemTable temporarily stores key-value pairs in

main memory, which are to be flushed. LSM-tree manages

SSTables in multiple different levels and data flushed from

MemTable are stored in SSTable at level 0. Every SSTable

in the persistent storage covers a key range from the smallest

key to the largest key in sorted order. Except level 0,

all SSTables in each level have disjoint key ranges with

each other. Each level has a threshold in size, and when

it reaches the threshold, it triggers the compaction process.

When compaction is triggered, it selects a victim SSTable

from the level where the compaction process is triggered.

Then compaction merges the victim SSTable with SSTables

having an overlapping key range in the next level and insert

new SSTables to next level. Since SSTables are immutable,

keys that were overwritten or deleted are reclaimed during

the compaction process.

Unlike the conventional LSM-tree, WiscKey [16] pro-

poses the key-value separation, where value is appended

to the separate Value Log. Then it stores the key with its

Value Log offset in LSM-tree. As WiscKey separates values

from the LSM-tree and stores actual values in the Value

Log, it largely reduces the size of SSTables compared to

conventional LSM-tree. As a result, WiscKey reduced a

significant amount of data that has to be read and written in

the compaction process. Since both key and value are written

to the Value Log, WiscKey ensures strong consistency by

persisting every Value Log entry before sending a response

to the user.

Figure 2 depicts how the user’s key-value is stored on

a PUT request in the LSM-tree based key-value store with

key-value separation. 1© The key and value are appended to

the Value Log, which is in the persistent media. 2© A pair of

the key and its Value Log offset is inserted to MemTable. If a

power failure occurs at this moment, Value Log is utilized as

write-ahead-log (WAL) to replay user’s requests that were

in volatile MemTable. After successfully persisting Value

Value Log Append

Value Log

Foreground I/O

Background I/O

<Key, Value>

DRAM
Storage

MemTable (Immutable)

MemTable (Mutable)

SSTable SSTable Level 0

Level 1SSTable SSTable SSTable

Level 2SSTable SSTable SSTable SSTable

Level Compaction

MemTable Update

<Key, Value Log Offset>

SSTable Flush③

④

②

①

Figure 2. WiscKey’s LSM-tree architecture and key-value insertion
process.

Log and inserting to MemTable, a response to the user’s

request is sent. 3© When the size of MemTable reaches a

threshold, LSM-tree marks the MemTable as immutable to

prevent any further modification, then, converts it into an

SSTable file and write it to Level 0. If the total size of

SSTable in Level 0 reached the threshold, LSM-tree triggers

the compaction process as a background job. 4© Compaction

process will select a victim SSTable and merges it with

SSTables in the next level. During this process, if any deleted

or overlapping keys are found, they are removed from the

SSTable. Compaction process could be recursively triggered

if SSTables newly added to the next level make the total

size of next level reaches to the threshold.

For a GET request, the Value Log offset corresponding to

the key is required to get the actual value. LSM-tree searches

the key in the following order: first at MemTable, second at

immutable MemTable, and then at all the levels of SSTables.

If the key is found in multiple different levels, the key at

the lowest level has the latest Value Log offset. For example,

if the key is found in level 0 and level 2, then the key in

level 0 has the latest Value Log offset. After retrieving the

Value Log offset successfully, the actual value is read from

the Value Log to return to the user.

B. Value Log Cleaning

In a conventional LSM-tree where key-value separation

is not employed, after the compaction process, deleted or

overwritten keys and their values are removed from the

LSM-tree. However, when the LSM-tree employs the key-

value separation, their corresponding Value Log entries are

not removed from Value Log until Value Log cleaning is

triggered. During Value Log cleaning, invalid log entries

should be removed and, at the same time, consecutive free

space should be reclaimed for log entries to be newly

appended. For Value Log cleaning, WiscKey appends both

key and value to the Value Log and maintains the head and

tail pointer of the Value Log. The Value Log cleaning is

performed as follows. (1) From tail pointer, read a fixed-size
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Figure 3. Architecture overview for an SSD.

chunk. (2) Search the keys inside the chunk from LSM-tree.

(3) Compare current log offset and log offset generated from

search results. If Value Log offsets are the same, the Value

Log entry is valid. Otherwise, it is invalid. Valid log entries

are appended at the head pointer whereas invalid log entries

are deleted. After safely persisting valid log entries, a chunk

from the tail pointer is truncated.

C. Solid-State Drives (SSD)

1) SSD Architecture: Figure 3 shows a simple example of

the SSD internal structure. SSD consists of hardware com-

ponents such as NAND flash chips, NAND flash controller,

CPU and Memory. Unlike HDD, SSD runs software such as

flash translation layer (FTL), garbage collection, and wear-

leveling on the CPU using DRAM buffers. NAND flash

employs page and block (a set of pages) as the units for

I/O. Read and write are performed in the unit of NAND page

and erase in the unit of block. In order to re-write a written

page once before, erase must be implemented. NAND flash

controller implements I/O operations for NAND flash chip.

FTL running on the CPU provides an abstraction layer to

the host by maintaining a mapping table that maps logical

pages to physical pages. Since NAND flash does not allow

overwrites, it uses the FTL to implement an out-of-place

update operation.

2) I/O Flow: When a host requests a write to a specific

logical page number (LPN), the FTL finds the corresponding

physical page number (PPN) corresponding to the LPN in

the mapping table. If the PPN mapping does not exist,

the new free page is allocated to update the mapping

information, and then the NAND flash controller performs

I/O on the NAND flash channel corresponding to the PPN.

If I/O is successfully performed, the SSD responds to the

host. If there is a PPN corresponding to the LPN, an out-of-

place update is performed by allocating a free page, and the

previous PPN is made as an invalid page. Garbage collection

is triggered if there is no free space. In this case, a victim

block is selected, valid pages of the victim block are copied

to the free block, and the LPN-to-PPN mapping information

of the valid pages is updated accordingly. When the copying

PCIe
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User Application
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Key-Value Syscall
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Figure 4. iLSM-SSD architecture and components.

value pages of the victim block is completed, erase the block

and mark all the pages that belong to that block as free

pages. When a host requests a read to a specific logical page

number (LPN), the FTL finds a corresponding physical page

number (PPN) corresponding to the LPN in the mapping

table. Then, it returns the data at that PPN to the host. If

it does not exist, it means the LPN has never been written.

Therefore, it will return some arbitrary data.

In this paper, we implement the LSM-tree with the key-

value separation by utilizing the CPU and DRAM of an SSD.

The LSM-tree is a memory data structure that shares CPU

and DRAM resources with FTL in the SSD. In particular,

since the SSD’s internal DRAM size is limited, the memory

usage for the LSM-tree operation must be optimized for this

small memory space.

III. DESIGN AND IMPLEMENTATION

In this section, we provide the design and implementation

details of each component of iLSM-SSD in a top-down

fashion – key-value API library, key-value device driver,

NVMe protocol extension for key-value SSD, LSM-tree

implementation in the SSD, and in-storage processing for

data analytics.

A. Overview for iLSM-SSD

Figure 4 depicts an architecture overview of iLSM-SSD.

iLSM-SSD consists of (i) a set of user-level key-value APIs,

(ii) key-value device driver, and (iii) iLSM-SSD device. The

key-value API library provides a set of key-value operations

such as PUT, GET, and DELETE to the user. Key-value

requests of the user are passed to the key-value device driver
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through system calls. The key-value device driver is a kernel

module that is responsible for communicating with iLSM-
SSD through the key-value device communication protocol.

We designed the key-value protocol by extending an existing

PCIe-based NVMe protocol. The key-value device driver

delivers the user’s key-value request to iLSM-SSD. Then,

key-value commands are handled by the iLSM-SSD device.

B. Key-Value API and Device Driver

Key-value operations such as PUT, GET, and DELETE

are implemented via system calls. These system calls pass

these operational commands to the key-value kernel driver,

which implements a key-value communication protocol to

iLSM-SSD. Existing storage protocols such as SATA and

NVMe were designed for block-based storage devices. Since

the NVMe protocol is designed considering low latency and

high parallelism of the modern SSD, the NVMe protocol

becomes the most popular storage communication protocol

for high-performance PCIe-interface SSDs. We carefully

extended the NVMe protocol for the key-value protocol

while taking full advantage of the existing NVMe protocol.

The basic operations of key-value interface are PUT, GET,

and DELETE. We redefined key-value operational com-

mands by using the areas defined in the NVMe commands

such as vendor-specific OpCode, LBA start address, and

reserved area. Figure 5 shows our newly defined NVMe

commands for PUT, GET, and DELETE. In each command,

the opcode area specifies these operations. The LBA start

address area is used to specify an 8 bytes length key. Each

NVMe command includes a page list to transfer physical

addresses of pages on DRAM. Using these addresses, the

SSD is able to pull data from the host for write command

or push them to the host for read command. PUT and GET

commands in the key-value extension of NVMe protocol

utilize the page list for the value data of the key. However,

for a key-value interface, the length of value data may not

be expressed with the block size and the number of blocks

because of variable value size. To solve the problem, we

used some reserved area of the NVMe protocol to specify the

length of value data for PUT command and the size of buffer

for GET command. To implement key-value commands, we

modified the NVMe device driver in Linux Kernel. All key-

value commands are handled as same as any other NVMe

commands and transferred through the PCIe interconnect.

C. LSM-tree based Key-Value SSD

To implement an LSM-tree based key-value SSD, we

adopted the design idea of WiscKey [16]. It is because Wis-

cKey offers small LSM-tree and less compaction overhead.

The host-side implementation of WiscKey relies on the file

system since SSTables and Value Log are stored as files.

On the other hand, when WiscKey is implemented inside of

an SSD, it has to deal with NAND pages rather than files

because FTL does not provide the file interface. To reduce

Command ID
OpCode

Namespace ID

Page List

Key
KV Length

Key-Value PUT

Command ID
OpCode

Namespace ID

Page List

Key
Buffer Size

Key-Value GET

Command ID
OpCode

Namespace ID
Key

Key-Value DELETE

Key-Value Extension

Existing NVMe

Figure 5. Key-value commands (PUT, GET, and DELETE) extending
NVMe protocols.

the semantic gap between LSM-tree and NAND flash, iLSM-
SSD implements the WiscKey over the logical address space

offered by the FTL. Thus, in iLSM-SSD, SSTables and Value

Log are all managed in a log fashion on the logical address

space of NAND pages.

Figure 6 shows the architecture of iLSM-SSD. It consists

of LSM-tree, SSTable Log, Value Log and FTL. The FTL

provides logical address space on top of physical NAND

chips. The logical address space is partitioned into two areas

– SSTable Log and Value Log. SSTables generated from the

LSM-tree are stored in the SSTable Log area, and values

are stored in the Value Log area. SSTable Log and Value

Log provide free space through compaction and Value Log

cleaning respectively.

An SSTable consists of a metadata block, bloom filter

blocks and index blocks. Metadata of the SSTable includes

SSTable id, SSDTable size, level it belongs to, location of the

bloom filter and index blocks. Due to key-value separation,

SSTable stores pairs of key and Value Log offset that are

small and fixed. Thus, we embedded the Value Log offset

corresponding to a key into index block. When searching

a specific key in the SSTable, it first examines the bloom

filter block. Then, it searches the key from index block for

the Value Log offset. Note that the key may not be found

in the index block due to false positive of the bloom filter.

The metadata block of the SSTable is also cached in DRAM

as per-SSTable metadata with maximum and minimum keys

of the SSTable. Because SSTable searches involve reading

multiple NAND pages, the maximum and minimum keys

help filter out SSTables that do not need to be searched.

D. Memory Consideration

Since SSDs have a very limited internal memory capacity,

it is crucial to evaluate the memory space overhead of

iLSM-SSD. Compared to the in-memory data structure of

the existing block-based SSD, the primary data structure

added in the iLSM-SSD is MemTable for LSM-tree and per-

SSTable metadata. Also, there is a reserved working space

for holding SSTables during compaction and SSTable search.

1) Memory Overhead of MemTable: MemTable is one of

the key data structures of LSM-tree. The input key-values

are first stored and searched in the MemTable. Therefore,
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size and number of MemTable directly affect to PUT perfor-

mance. MemTable is usually implemented using a skip list.

We can estimate the memory space overhead of a single

MemTable from expected memory consumption of a skip

list as the following example. A single node in the skip

list has key, value and level pointers. The number of level

pointers of each node starts from 1, and a level is added with

probability p until it fails to add a level. In our design, we

used p = 1
2 . Also we limited the maximum number of level

as MaxLevel. We can get the expected number of pointers

of a single list node in the skip list as
∑MaxLevel

i=1 ( 12 )
i.

When MaxLevel = 10, the expected number of pointers of

a list node is about 8. We use 4 bytes pointer, 8 bytes key,

and 8 bytes Value Log offset in the skip list. When the skip

list has 2,048 pairs of key and Value Log offset, the expected

size of a full skip list is (8B+8B+4B×8)×2048 = 64KB.

Since the memory space overhead of a single MemTable is

small, the number of MemTables can be determined by the

memory constraint of SSD.

2) Memory Overhead of per-SSTable Metadata: The

memory overhead of per-SSTable metadata is dominated by

the total number of SSTables in LSM-tree. With the key-

value separation technique, the size of SSTable can be kept

small compared to the conventional LSM-tree regardless of

the value size. In other words, a single SSTable can cover

more key-value pairs with the key-value separation. Thus,

the same amount of key-value pairs can be managed with

fewer SSTable. Also, it is essential to reduce the number

of SSTables through compaction due to the characteristics

of LSM-tree. Therefore, the memory space overhead of per-

SSTable metadata is kept low through periodic compaction.

3) Memory Overhead of Working Area for Compaction
and SSTable Search: Compaction and GET operation re-

quire working area in memory to load SSTables. Since

invalid pages to be reclaimed by Garbage Collection of

SSD are generated only after compaction, we can share

memory space reserved for Garbage Collection of FTL with

compaction of LSM-tree. For GET operation, only part of

SSTable is loaded because bloom filter is examined first then

index block is searched. So, we can limit the working space

for the GET operation to multiple NAND pages.

E. Scattered Logging

Value Log cleaning is required to reclaim invalid areas

that occur in the middle of the log. In WiscKey, value and

key are appended to the Value Log. And WiscKey maintains

a log head pointer and a log tail pointer for the Value Log.

The log head points to the location where the new entry

will be written, and the log tail pointer points to the log

entry where Log cleaning will begin. The detail of Log

Cleaning is described in Section II-B. WiscKey stores key

and Value Log offsets in LSM-tree, and locates Value Log

entry using the offset. Therefore, if the Value Log entry is

moved from the log tail to head during Value Log cleaning,

the Value Log offset already stored in SSTables is needed

to be updated. Due to the nature of LSM-tree, Value Log

offset has to be inserted to LSM-tree again. However, this

approach increases the compaction overhead because new

offsets are added to the MemTable.

Compaction overhead caused by Value Log cleaning is

fundamentally due to the offset change of Value Log entries.

To minimize the offset change of Value Log entries during

Value Log Cleaning, we propose the Scattered Logging by

utilizing the mapping table of FTL already existing in SSD.

A key idea of Scattered Logging is to reuse invalidated

pages, the invalid LPNs, in the Value Log. Since pages in

the Value Log are invalidated by update or deletion of keys,

it is safe to record new Value Log entries. Therefore, the

Scattered Logging allows writing new Value Log entries to

the invalid LPN area and deferring the offset change of valid

log entry during the Value Log cleaning.

To write new Value Log entry promptly in Scattered
Logging, it is necessary to keep track of invalid areas (LPNs)

scattered across the LPN space of the Value Log. Managing

sparsely invalidated LPNs is challenging, mainly because of

the size of the data structures required for tracking LPNs.

Memory optimization is essential because the space cost of

DRAM in SSDs is very high. For example, consider a list

of invalid LPNs for the Value Log in 1 TB SSD with 16 KB

page size. Assuming that each list node has an LPN and a

pointer to the next list node, and each occupies 4 bytes, the

maximum size of the list will be 512 MB. The maximum size

is the case that all LPNs are in the list. However, in Scattered
Logging, we utilize an existing FTL data structure to manage

invalid LPNs without any additional spatial overhead.

The page-level mapping (FTL) already manages LPN-to-

PPN mappings. The PPN field corresponding to invalid LPN

in FTL mapping table can be used as pointers for invalid
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Figure 7. Design comparison on Value Log Cleaning and Scattered Logging.
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Figure 8. Free LPN List update with Garbage Collection.

LPN list management. This is because the invalidated LPN’s

PPN field is no longer valid. Scattered Logging manages the

scattered invalid space by managing the invalidated LPNs as

a linked list with corresponding PPN fields. Each PPN field

has a next invalid LPN. Therefore, the invalid LPN list can

be managed by only two additional variables in memory,

head and tail pointers.

Figure 7 illustrates the difference between Value Log

cleaning and Scattered Logging. Suppose we want to insert

three log entries, but there is no free space and value log

cleanup is called (Figure 7(a)). A valid Value Log entry

at LPN2 is moved to LPN6 and Log Tail is updated to

LPN4. After that, new log entries can be appended to

log head consecutively. Since LPN2 is moved to LPN6,

corresponding Value Log offsets in LSM-tree are need to

be updated. On the other hand, in the Scattered Logging
(Figure 7(b)), invalid LPNs (which are actually free to be

written) are managed by the invalid LPN list using PPN

fields of the page-level mapping table. Thus, new log entries

can be written at LPN1, LPN3, and LPN6. Since no LPN’s

data needs to be moved, Scattered Logging does not require

updates in LSM-tree for any other than new Value Log

entries.

Figure 8 details how the PPN fields of the mapping table

are used for Scattered Logging while the GC is running.

In the Figure 8, there are two blocks, victim block and new

block. During the GC, valid pages of the victim block are to

be copied to new block. Figure 8(a) shows the invalid LPN

list with head and tail pointers. In the example, during GC,

two physical pages at PPN520, PPN522 are copied to new

block at PPN600 and PPN601. In the mapping table, the

PPN field of the corresponding LPN (LPN20 and LPN22)

is automatically updated. On the other hand, PPN field in the

mapping table at LPN21 and LPN23 become reusable, as

their physical pages corresponding to PPN are to be erased

during the GC. Thus, these fields are managed by partial

head and tail pointers (Figure 8(b)), and they will end up

being merged with the head and tail pointers of the invalid

LPN list (Figure 8(c)).

However, if the size of a single Value Log entry is

larger than the page size and consecutive invalid LPNs are

not found from the invalid LPN list, the valid Value Log

entries have to be copied to make consecutive free space as

conventional Value Log cleaning.

F. iLSM-SSD Operations

PUT, GET and DELETE operations of iLSM-SSD handled

as follows:

1) PUT Operation: First, the user application issues PUT

request using the Key-Value API library. The Key-Value API

library uses the system call to pass PUT request to Key-

Value SSD Device Driver and copy the key and value to the

kernel space. The Key-Value SSD Device Driver packs the

corresponding PUT request into the NVMe PUT command,

inserts the kernel buffer page addresses into the page list, and

sends it to the iLSM-SSD device via PCIe. iLSM-SSD fetches

the PUT command, checks the page list, and copies the value

into the internal memory using DMA. The value is appended

to Value Log then the key, and the corresponding Value

Log offset is pushed to MemTable. If the MemTable is full,

MemTable is switched to Immutable MemTable and then

flushed. In MemTable flushing, bloom filter and index block

are created and packed into NAND page-aligned SSTable.

After that, SSTable is inserted into SSTable log. At this

point, NAND Flash Write is sent to NAND Flash Controller

asynchronously. Then the per-SSTable metadata is updated

and sends a response for the PUT command.

The flushed SSTable may trigger the compaction on level

0. Following that, the rest of level also may trigger another

compaction. Our iLSM-SSD performs all compaction until

there is no level triggering compaction.
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Figure 9. Key-value commands for data analytics extending NVMe
protocols.

2) GET Operation: When a user application issues GET

request, the corresponding request is passed to the iLSM-
SSD through the Key-Value Device Driver. At this point, the

page list includes kernel buffer pages allocated by the device

driver, so that the value can be copied from the iLSM-SSD
via DMA. When the GET request reaches the iLSM-SSD, it

first examines the MemTable and the Immutable MemTable.

If it finds the corresponding key, it reads the value using

Value Log offset and copies the value to Host. Otherwise,

it starts searching SSTable from the most recent SSTable of

level 0. For each SSTable, first, check the key range from

per-SSTable metadata. If requested key is in the key-range

of SSTable, the bloom filter is loaded and examined. Finally,

the index block is searched when result of bloom filter is

positive. However, because the result of bloom filter can be

false positive, the key may not be found in index block. In

case of false positive, iLSM-SSD continues searching from

next SSTable. Once the key is found the corresponding value

is sent to host. Otherwise, it returns an error to host.

3) DELETE Operation: In case of DELETE operation,

we simply issue PUT request with special value which

indicates the key is deleted. The special value for DELETE

operation is handled as same as PUT Operations in iLSM-
SSD.

G. Data Analytics in iLSM-SSD

Near-data processing is a method of reducing data move-

ment by performing data analytics at the location where the

data is stored. Recent studies introduced near-data process-

ing frameworks to process data in SSDs using internal com-

puting resources such as CPU and memory [17], [18], [21].

These studies assume that near-data processing is performed

on a block-by-block basis. That is, the user or application

must tell the SSD which blocks to perform operations on.

To do this, users and applications must find the data layout

through the file system before performing near-data process-

ing. This process still results in non-negligible file system

interaction overhead and requires data movement between

the host and the device. On the other hand, with iLSM-SSD,

when performing near-data processing, the data layout can

be obtained directly from the SSD, thus eliminating data

movement. To this end, we design a key-value analytics

framework to allow near-data processing in iLSM-SSD. In

order to implement and use near-data processing in iLSM-
SSD, it considers the followings: data analysis kernels to be

served in the SSD, NVMe command definition for executing

the data analytic kernels, and APIs to be used by data

analytics logic.

1) Data Analytics Logic of User: In near-data processing,

data analytics logic has to be provided by the user. For the

user provided analytics logic, we store the binary of user-

defined program as an executable key-value pair in iLSM-
SSD. The executable key-value is stored in the same manner

as any other key-value pairs using a PUT command of iLSM-
SSD.

2) Storage Protocol for Key-Value Analytics: For the

executable key-value, a protocol needs to be defined for the

key-value data analytics. As shown in Figure 9, the EXE-

CUTE and STATUS commands are defined by extending

the NVMe protocols. The EXECUTE command has RUN

ID, key, and parameter list field. The RUN ID is a unique

identifier for each EXECUTE command and is used to find

the status and return value of the command. The parameter

list field holds a list of keys to be used as a parameter

of the executable key-value by reusing the page list field

in the PUT and GET commands. To query the current

status of the EXECUTE command, we use the STATUS

command with corresponding RUN ID. Possible states are

WAITING, RUNNING, and EXITED, indicating when the

EXECUTE command is waiting, running, or ended. When

the EXECUTE command is terminated, it can return an

8 Byte single integer to the host that can be obtained by

the STATUS command. Using the return value, the user can

send back the result of the job as a single integer or a new

key containing the result.

3) API for Key-Value Analytics: The data analytics logic

may need to dynamically load keys that are not in the

parameter key list during execution. For this end, we provide

the same API as the NVMe key-value extension to the

executable key-value. For example, consider a job is flipping

all bits for every key in the parameter key list. The job can

store the result of each key using the PUT command and

create a meta key-value that contains the list of output keys.

Then, the key of the meta key-value can be returned to the

host.

IV. EVALUATION

A. Evaluation Setup

To demonstrate the design of iLSM-SSD, we prototyped

it on the Cosmos+ OpenSSD platform. Table I shows the

details of the hardware we prototyped on. The Cosmos+

OpenSSD equips Xilinx Zynq-7000, which has an ARM

Cortex-A9 processor with two cores, each running at 1GHz,

FPGA and 1GB DDR3 DRAM. The FPGA operates SSD

controller including NAND Flash controllers, NVMe con-

trollers, and PCIe controllers. The page-level FTL and

garbage collection are running at CPU. Though the Cosmos+
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Table I
COSMOS+ OPENSSD PLATFORM SPECIFICATION.

SoC

Xilinx Zynz-7000

ARM Cortex-A9 (up to 1000MHz)

HYU Tiger 4 Controller (NVMe Controller in FPGA)

NAND Module

1TB module, NVDDR2

4 Channel, 8 Way

18048B Page (1664B Spare)

Interconnect PCIe Gen2 8-lane

FTL Page-level Mapping, On-demand GC

Table II
HOST MACHINE SPECIFICATION.

CPU Intel Core i3-2100@3.1GHz 2C/4T

RAM 8GB

OS Linux Kernel 4.19.43

OpenSSD has two cores, our iLSM-SSD software implemen-

tation utilizes only single core. The Cosmos+ OpenSSD is

connected to the host machine via PCIe Gen2 8-lane with

NVMe protocol. All experiments are run on the host ma-

chine as shown in Table II. The host machine has two cores

and 4 threads with 8GB of DRAM, and runs Linux Kernel

4.19. For evaluation purposes, we implemented WiscKey

based on RocksDB. We assume strong consistency scenario

for key-value queries, which means that user’s requests get

responses only when changes are durable.

B. Results

For fair evaluation, the WiscKey was implemented in the

RocksDB. And the performance of iLSM-SSD for PUT and

GET operations are compared with the RocksDB perfor-

mance.

1) PUT Performance: To evaluate the PUT performance,

we generated sequential and random PUT workloads using 1

million of unique keys. We measured throughput and average

latency by varying the value size.

Figure 10 shows average throughput and latency com-

parison results for WiscKey and iLSM-SSD. In the se-

quential PUT workload, all keys are sorted. There is no

SSTable where key ranges overlap, even if compaction

occurs. Therefore, compaction overhead is very negligible.

As shown in Figure 10(a), iLSM-SSD shows twice as much

throughput as WiscKey for all value sizes regardless of write

patterns (sequential and random). In the case of WiscKey,

compaction can be handled in the background using the

host’s spare CPU, but iLSM-SSD using single core has to

deal with compaction too. This means that the iLSM-SSD is

a better option than the WiscKey running on the host, even

though iLSM-SSD has much less computing resources than

the host.

We also observe that the throughput of both iLSM-SSD
and WiscKey decreases as the value size increases. This

is because time it takes to copy the key-value into device

increases with value size. WiscKey should also call the

fdatasync function to persist the value log for every PUT

request. Unlike iLSM-SSD, WiscKey has to pay for not

only the cost of data copying, but also the sync overhead

of the file system. However, since the iLSM-SSD does not

go through the file system, it only has the overhead for

transmitting key-values.

Figure10(b) shows the throughput comparison for random

PUT workload. In the case of random PUT workload,

the compaction cost increases because key ranges occur

where SSTables overlap each other. iLSM-SSD showed

similar throughput to sequential PUT for all value sizes.

For WiscKey, compaction must read SSTables and write

to them. Therefore, compaction and value log writes share

I/O bandwidth between the host and the device. On the

other hand, in case of iLSM-SSD, compaction consumes the

internal bandwidth of SSD because compaction is performed

inside of the device.

WiscKey showed lower throughput than sequential PUT

when value size was 4 KB. However, iLSM-SSD showed

similar throughput to sequential PUT for all value sizes.

For WiscKey, compaction must read SSTables and write to

them. Therefore, compaction and value log writes share I/O

bandwidth between the host and the device. However, in case

of iLSM-SSD, compaction consumes internal bandwidth of

SSD because compaction is performed inside of the device.

Therefore, even if compaction occurs, the PUT request uses

all I/O bandwidth between the host and the device.

Figure 10(c)&(d) show average latency in sequential and

random PUT workloads. In the case of WiscKey, compaction

is performed using the background thread pool, and the

foreground thread writes the value log. Thus, since multiple

threads of the host can be used, the latency of WiscKey

is relatively free from compaction overhead. However, SSD

has a limited number of CPU cores. In the case of sequential

PUT, compaction overhead is less than random PUT. Be-

cause iLSM-SSD performs compaction using a single core,

the latency of PUT request includes compaction overhead.

Nonetheless, in both sequential and random workloads,

iLSM-SSD shows half-latency compared to WiscKey.

We also measured average latency of fdatasync in the

WiscKey. fdatasync is called to persist Value Log entries

for every PUT request. As shown in Figure 10(c)&(d),

since WiscKey relies on the file system for persisting data,

the average latency of PUT requests is mainly contributed

by fdatasync. On the other hand, iLSM-SSD shows lower

latency than fdatasync because PUT requests for iLSM-SSD
do not involve the file system.

2) GET Performance: To evaluate the performance of a

GET request, we generated a sequential and random GET

workloads using 1 million unique keys. Figure 11(a)&(c)

show throughput and latency comparisons for sequential

GET workload. For sequential GET workload, WiscKey

shows high throughput since it utilizes the iterator which
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(a) Sequential PUT (b) Random PUT (c) Sequential PUT (d) Random PUT

Figure 10. Performance comparison of iLSM-SSD and WiscKey for PUT workloads.

(a) Sequential GET (b) Random GET (c) Sequential GET (d) Random GET

Figure 11. Performance comparison of iLSM-SSD and WiscKey for GET workloads.

is designed for the sequential access. Thus, when the next

key is stored at the same SSTable, WiscKey can get the value

by simply moving the iterator forward. Because consecutive

keys do not require reading SSTable, the latency of pread is

higher than GET latency of WiscKey. However, iLSM-SSD
handles GET requests individually even if the access pattern

is sequential. Therefore, the next key has to be searched

through whole LSM-tree even if it is stored at the same

SSTable.

Figure 11(b)&(d) show the performance comparison of

random GET workload. In random GET Workload, the

WiscKey can not utilize the iterator. Thus WiscKey and

iLSM-SSD process each GET request separately even if

GET requests are accessing consecutive keys. WiscKey

shows better throughput than iLSM-SSD, but the throughput

decreases as the value size increases. On the other hand,

iLSM-SSD shows similar throughput for all value sizes. As

shown in Figure 11(d), the latency of the GET request in

the WiscKey is mostly contributed to pread latency. This

is because WiscKey utilizes host’s CPUs, which is more

powerful than the CPU in SSD, for searching SSTables.

The latency of iLSM-SSD shows higher than pread, because

iLSM-SSD has to search SSTables serially since it uses a

single core.

3) File System Layout Overhead: Near-data process-

ing of block-based SSDs (NDP-SSD) must find out the

physical layout of the data in user space and push it to

the SSD. Time overhead can be divided into two time

steps - (i) time to extract the phyaical data layout from

the file system (TFS Extract) and (ii) time to send it to

Table III
AVERAGE TIME (μSEC) OF EACH DELAY TO FIND OUT THE PHYSICAL

LAYOUT OF THE DATA FOR NEAR-DATA PROCESSING.

NDP-SSD iLSM-SSD

Delay TFS Extract TPush SSD TMemTable TSSTable

(μsec) 4.25 522.00 1.14 663.62

SSD (TPush SSD). On the other hand, in iLSM-SSD, the

layout of the data is managed by the LSM-tree. Therefore,

only the LSM-tree search delay is added to the overhead for

extracting the data layout in iLSM-SSD. More specifically, an

LSM-tree search may be hit in the MemTable (TMemTable),

or it must search for the SSTable (TSSTable).

We measured each time delay for NDP-SSD and iLSM-
SSD. Table III shows the average time of each delay.

WiscKey has to pay a time delay overhead of 526.25 μsec.

On the other hand, iLSM-SSD only has to pay 1.14 μsec for

the time delay in case of hit on the MemTable, or 664.76

μsec about 26% higher delay than NDP-SSD. However, the

temporal locality of workloads and an appropriate amount

of MemTables can reduce the miss rate in the MemTable.

V. RELATED WORK

Key-Value Store for SSD: Various approaches have been

proposed for building the key-value stores for SSD in

host-side without the file system intervention [22]–[26].

NVMKV [22] proposed a hash-based key-value store to

eradicate the write amplification by exploiting advance

features of FTL such as sparse mapping. NVMKV uses
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the hash value of the key as an LBA and only maps

the LBA range to NAND flash where key-value is stored.

SkimpyStash [25] also proposed a hash-based approach

to minimize DRAM footprint. SkimpyStash manages hash

buckets using linear chaining while storing the head of the

chain in DRAM and the rest of chain in SSD. SkimpyStash

reduced latency for querying non-existing key by employing

the per-bucket bloom filter. SILT [23] also employed the

hash-based approach, but it also combines Log and Sorted

Table. LOCS [26] implements an LSM-tree on open-channel

SSD which exposes the internal geometry of SSD to the

host. LOCS optimized compaction by locating SSTable

considering NAND flash channel conflict. These approaches

are optimized for memory footprint and do not have file

system overhead because they are directly built on SSD.

However, management of data stored in SSD such as linear

probing in the hash table, data movement between layers

or compaction still incur data movement between host and

device. In iLSM-SSD, all management of LSM-tree such as

compaction, GC and log cleaning is performed inside of

SSD.

Implementing Key-Value Store in SSD: Several recent

researches proposed the key-value store implementations

inside of the SSD [27]–[30]. KAML [27] introduced hash-

based key-value SSD to optimize the key-value performance.

However, due to the hash table, it is difficult to perform

operations requiring key order such as sequential scanning

over keys. Also for the hash table, the load factor is crucial

for the performance due to the hash collision. KVSSD [28]

proposed the LSM-tree approach for Key-Value SSD and

evaluated with the simulator. To mitigate write amplification

problem caused by compaction, the remapping compaction

is proposed that the resulting SSTable from compaction has

a pointer to old SSTable to prevent rewriting same Key-

Values. However, remapping compaction still leave inval-

idated key-value pairs. Thus, it will require to rewrite all

SSTables which have been remapped before at some point

later. LightStore [29] proposed the Key-Value SSD cluster.

LightStore proposed LSM-tree based Key-Value SSD which

is directly attached to the network and operates as a single

server. On the other hand, iLSM-SSD attached as a local

device to a host system. Kim et al. introduced the compound

operation to hash-based Key-Value SSD to optimize key-

value I/O performance [30].

Near-Data Processing Framework: SmartSSD [18], [19]

enables users to launch customized tasks using CPU in-

side of SSD. Tasks running inside of SSD can be like

map functions in Map-Reduce framework [18] or database

query [19]. Biscuit [17] introduced near-data processing

framework considering practical aspects. Biscuit defines the

protocols for near-data processing and eases the development

by supporting the full-featured standard library and modern

C++ standards. BlueDBM [31] introduced flash array with

near-data storage capability. In BlueDBM, storage nodes

connected by dedicated storage network each other it can

fully utilize the computing power of all nodes in the clus-

ter. Summarizer [21] proposed the dynamic load balancing

scheme for the near-data processing by implanting resource

monitor in SSD. These studies propose and optimize the

near-data processing frameworks on various dimensions

such as load balancing between host and device, resource

utilization in a storage array, and programmability. However,

all these frameworks need to acquire the data layout on

NAND flash via the file system [17], [31] or dedicated

protocol [18], [19], [21]. In addition, when the key-value

store is implemented inside of SSD like iLSM-SSD, near-

data processing requests only need to inform which key to

process to the device because the device already manages

the data layout.

VI. CONCLUSION

The LSM-tree based key-value store operates on file

systems and involves file system overhead. In particular,

WiscKey, which is an approach to implement key-value sep-

aration, minimizes the write amplification problem caused

by compaction of LSM-tree by writing value into Value Log

and managing only key and value offset by LSM-tree. But

WiscKey still could not completely hide the file system over-

head. In this paper, we design and prototype an iLSM-SSD
that runs WiscKey, an LSM-tree with key-value separation,

in the SSD firmware. In particular, we propose scattered

logging techniques to minimize the overhead of WiscKey’s

Value Log cleaning in a memory-constrained SSD envi-

ronment. For fair evaluation, we implemented WiscKey in

RocksDB and compare iLSM-SSD and the WiscKey. From

extensive evaluations with synthetic benchmark workloads,

we observed PUT performance was 1.6-4 times higher than

WiscKey, but GET performance can be significantly lower.

This low GET performance of iLSM-SSD can be improved

if user-level caching or kernel-level caching is implemented.
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