
GPUKV: An Integrated Framework with KVSSD and GPU
Through P2P Communication Support

Min-Gyo Jung1, Chang-Gyu Lee1, Donggyu Park1, Sungyong Park1, Jungki Noh2
Woosuk Chung2, Kyoung Park2, Youngjae Kim1,∗

1Dept. of Computer Science and Engineering, Sogang University, Seoul, Republic of Korea
2SK hyinx

{mingyoj, changgyu, dgpark, parksy, youkim}@sogang.ac.kr
{jungki.noh, woosuk.chung, kyoung.park}@sk.com

ABSTRACT
When data is loaded from a key-value store to the GPU in a con-
ventional GPU-driven computing model, it entails the overhead of
all the heavy I/O stacks of the key-value store and file system. This
paper presents GPUKV, a GPU-driven computing framework that
eliminates the aforementioned overhead with less host-side usage
of resources such as CPU and memory. GPUKV has the following
three features: (i) GPUKV provides a key-value store abstraction
to the GPU; (ii) In GPUKV, when loading data from the key-value
store to the GPU, it is performed through PCIe peer-to-peer (P2P)
communication without copying to the user and kernel space mem-
ory; and (iii) GPUKV uses KVSSD, which implements a key-value
store inside an SSD, completely eliminating the interaction with the
key-value store and file system for P2P communication. We have
developed GPUKV with a KVSSD implemented on the Cosmos+
OpenSSD platform in a Linux environment. Our extensive evalua-
tions demonstrate that GPUKV improves execution time by up to
18.7 times and reduces host CPU cycle usage by up to 175 times
compared to conventional CPU-based GPU computing models.

CCS CONCEPTS
•Computer systems organization→Dataflowarchitectures;
• Computing methodologies → Graphics processors; • Soft-
ware and its engineering → Data flow architectures; Operating
systems;

KEYWORDS
Key-Value SSD, GPGPU, Peer-to-Peer Communication

ACM Reference Format:
Min-Gyo Jung1, Chang-Gyu Lee1, Donggyu Park1, Sungyong Park1, Jungki
Noh2 and Woosuk Chung2, Kyoung Park2, Youngjae Kim1, . 2021. GPUKV:
An Integrated Framework with KVSSD and GPU Through P2P Communi-
cation Support. In The 36th ACM/SIGAPP Symposium on Applied Computing

∗Y. Kim is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8104-8/21/03. . . $15.00
https://doi.org/10.1145/3412841.3441990

(SAC ’21), March 22–26, 2021, Virtual Event, Republic of Korea. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3412841.3441990

1 INTRODUCTION
The massively parallel processing of a GPU accelerates the process-
ing speed of data-intensive applications in various areas such as
deep learning, simulation and graph processing. Data processing
using GPUs consists of the following steps [21]: First, the host appli-
cation loads input data from storage devices to user space memory
via a file system. Then it copies the loaded input data from user
space memory to GPU memory. After that, when input data is pre-
pared in GPU memory, the host application can start executing the
GPU kernel. Thus, the host application controls the execution pro-
cess of the GPU kernel in a conventional GPU programming model.
This approach is called a CPU-driven GPU computing model [21].
However, CPU-driven GPU computing models have the follow-
ing problems: First, in data-intensive applications, loading a large
amount of input data from storage devices to GPU can create an
I/O bottleneck due to excessive memory copy operations by the
CPU. Second, a significant amount of host-side resources such as
CPU and DRAM can be overwhelmingly used to load data from
storage devices into GPU memory.

Several studies such as SPIN [1], NVMMU [30], Morpheus [27],
and HippogriffDB [13] have used PCIe peer-to-peer communication
(P2P) to minimize the overhead caused by data movement from stor-
age devices to GPU. P2P allows two PCIe devices to transfer data
directly to each other without using host-side resources. NVIDIA
and AMD GPUs support API for PCIe P2P communication [17, 25].
Such studies using P2P [1, 27, 30] eliminated the memory copy
overhead when transferring data to the GPU. However, in order
to perform P2P, the block address of the file must be known be-
forehand. This file-to-block address translation involves interaction
with the file system, consuming host-side CPU cycles. Even worse,
when input data used by the GPU kernel is stored in a key-value
store on the file system, P2P may not provide any performance
gains (Refer to Section 2.2). This is because the overhead of heavy
I/O stacks from the key-value store and file system can overwhelm
the benefits of reduced data movement overhead by P2P.

For instance, consider a graph analysis application that uses a
database to extract graph data and runs a kernel on the GPU. In
order to feed graph data directly from storage devices to the GPU
using P2P, the application first needs to find database files and file
offsets for the graph data. Then the application must consult the file
system to find the logical block addresses (LBAs) of the files. Then,
using this LBA information, the application makes a request to

https://doi.org/10.1145/3412841.3441990
https://doi.org/10.1145/3412841.3441990

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea M. Jung et al.

Host

User
Space

Kernel
Space

SSD Controller

SSD

Storage

Main Memory
GPU kernel

GPU Memory

GPU

Control Path

Data Path

RocksDB
Engine

! "

User
Space

File System

Kernel
Space

NVMe Driver

#

A

Application

B

C D

$

(a) CPU-driven GPU computing model w/o P2P

Host

User
Space

Kernel
Space

SSD Controller

SSD

Main Memory
GPU kernel

GPU Memory

GPU

Control Path

Data Path

Additional Path

!

RocksDB
Engine

" #

User
Space

File System

Kernel
Space

NVMe Driver

$
Application

%

&

Storage

A

B C

(b) CPU-driven GPU computing model w/ P2P

Figure 1: Conventional data transfer flow from key-value store (RocksDB) to GPU

storage devices and initiate direct data transfer to the GPU via P2P.
In CPU-driven GPU computing models, CPU intervention for the
database file search and file-to-block address translation described
above is inevitable for P2P.

To solve the aforementioned problems, in this paper, we propose
GPUKV, a GPU-driven computing framework where the GPU ker-
nel can initiate I/O requests while executing the kernel, directly
obtain input data from storage devices, and process them. GPUKV
is implemented on object storage devices such as a Key-Value SSD
(KVSSD) [3, 6–8, 11, 23, 24, 26, 28]. KVSSD implements a key-value
store inside an SSD. Therefore, there is no need to interact with the
key-value store and the file system for file-to-LBA address trans-
lation for P2P in the host. Therefore, it eliminates the use of host
resources. P2P also allows us to directly transfer data from KVSSD
to GPU without CPU intervention in the host.

This paper makes the following specific contributions:
• Key-Value Store Abstraction to GPU: In a conventional GPU-

driven programming model, the CPU had to manually supply in-
put data for the execution of the GPU kernel using cudaMemcpy.
However, GPUKV provides key-value store abstraction and I/O
programming APIs to GPU kernels to send key-value requests
to KVSSD when executing GPU kernels.

• Key-Value SSD: GPUKV adopts KVSSD, which implements a
key-value store inside an SSD, removing database and file sys-
tem dependency from the host system. Since GPUKV does not
rely on the host’s database or file system, the overhead by I/O
interactions for file-to-block address translation is eliminated.

• P2PCommunication betweenKVSSD andGPU: InGPUKV, a
GPU kernel can fetch its input data directly from KVSSD via P2P
communication, eliminating excessive memory copy overhead
during data transfer.
We implemented GPUKV, a GPU-driven computing model, by

extending GPUfs [22] on KVSSD, which we have prototyped on

the Cosmos+ OpenSSD platform [18] in a Linux environment. We
also implemented several conventional CPU-driven GPU program-
ming approaches such as KVSSD and RocksDB (C/NC) (Refer to
Section 4). For evaluations, we used two kinds of server environ-
ments, a powerful high-end server and a less powerful low-end
server and evaluated it for both synthetic and realistic GPU work-
loads. In our extensive evaluation, GPUKV had up to 9.1× and
18.7× performance improvement of execution time over KVSSD
and RocksDB (C/NC) for both synthetic and real workloads. Also,
GPUKV consumed 176× and 35× less CPU cycles than conventional
CPU-driven GPU computing approaches with synthetic workloads
on high-end and low-end servers, respectively.

2 BACKGROUND AND MOTIVATION
This section provides background on data transfer from key-value
store to GPU and a description of the motivation for this study.

2.1 Data Transfer from Key-Value Store to GPU
Figure 1 shows two different approaches to transferring input data
from key-value store to GPU. The conventional approach involves
performing multiple memory copy operations from storage devices
to GPU memory when sending input data to the GPU. On the
other hand, the P2P data transfer approach is to directly transfer
input data from storage devices to GPU memory without CPU
intervention during data transfer.

2.1.1 Conventional Approach. To clearly articulate data transfer
overhead in the conventional approach, we will use the RocksDB
key-value store [19] as an example. RocksDB manages multiple
SSTable files in a file system. A single SSTable stores a set of key-
value pairs. In addition to data blocks containing values, an SSTable
maintains a bloom filter to examine the existence of a key, and an
index block to search the data block offset. To get the corresponding
key-value, RocksDB first selects candidate SSTables and checks their

GPUKV SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

bloom filters. For each SSTable, if the bloom filter returns a positive,
it checks the index block whether the key exists. If the key is present,
it finally retrieves the corresponding values. Since RocksDB runs
on top of the file system, SSTable files must be loaded into the main
memory and then evaluated. Then, values corresponding to keys
will be copied to GPU memory.

Figure 1(a) shows the aforementioned data transfer flow in terms
of control and data path. The host application is responsible for
fetching key-value pairs from RocksDB, copying them into GPU
memory, and launching the GPU kernel. 1 First, the application
issues a GET request to RocksDB. 2 To get values corresponding to
keys, RocksDB reads candidate SSTable files including bloom filters
through the file system. The file system figures out the LBAs of the
files and sends a read request with LBAs of files to SSD through
the NVMe Driver. A After the read request with LBAs reaches
the SSD, the SSD controller transfers the data of LBAs to kernel
space buffers of the file system using direct memory access (DMA).
B Once again, the file system copies back the data to user space
buffers of RocksDB, and then RocksDB tests bloom filters. Then,
RocksDB searches index and data blocks. 3 After fetching values,
the RocksDB GET request completes. 4 The input data is now
ready to be sent to GPU memory, and the host application requests
the GPU driver to copy the data. C Since the GPU driver actually
copies the data, the input data is temporarily stored on the kernel
buffer of the system memory. D Finally, the input data is copied to
GPU memory via DMA.

2.1.2 Data Transfer using P2P Communication. Direct data transfer
using PCIe P2P communication can reduce host-side CPU and mem-
ory overhead due to multiple memory copy operations compared
to the conventional approach. However, in practice, applying P2P
data transfer to a system using a key-value store is not that sim-
ple, and it still entails significant host-side CPU usage. Figure 1(b)
shows a scenario of P2P data transfer with RocksDB. Issuing a GET
request, examining bloom filters and searching index blocks work
in the same manner in the conventional approach (1 , 2 , A , B).
However, there are additional paths (3 , 4). Refer to red solid ar-
rows in Figure 1(b). 3 When the RocksDB engine finds a value
corresponding to the key, it should consult with file system using
tools such as FIBMAP ioctl to determine the LBAs of the value. In
order to transfer the value using P2P, it has to specify the LBA
information in the NVMe command to the SSD controller. 4 A
P2P data transfer request with LBAs is sent to the SSD controller
via the NVMe driver. Then C the SSD controller directly transfers
data corresponding to LBAs to GPU memory without host-side
CPU intervention. Finally, 5 the completion of NVMe command is
informed to the host application and 6 the application launches
the GPU kernel. Even though P2P communication enables direct
data transfer, the on-disk layout of files must be extracted from the
file system. Moreover, data has to be aligned for P2P transfer in
both RocksDB and file system.

2.2 Motivation
We conducted several experiments to identify performance prob-
lems when performing P2P from SSD to GPU in a key-value store.
The detailed experimental setup is described in Section 4.1. We
measured the latency of a 4 KB key-value data transfer from SSD to

(Ideal)

RocksDB Get
P2P
Extract Layout
cudaMemcpy

RocksDB RocksDB w/ P2P GPUKV

D
at

a
Pu

lli
ng

 L
at

en
cy

 (μ
se

c)

0

200

400

600

800

Figure 2: Comparison of latency breakdown of I/O calls for
RocksDB with and without P2P, and NVMe SSD with P2P
(Ideal)

GPU for RocksDB [19] both with and without P2P. We compared
three configurations – RocksDB, RocksDB w/ P2P and GPUKV (Ideal).
RocksDB and RocksDB w/ P2P follow data transfer flows presented in
Figure 1(a) and (b) respectively. GPUKV (ideal) is an ideal situation
that can only be achieved by removing all the I/O stack overhead of
the key-value store and file system in GPUKV. For a fair evaluation,
we disabled all caching features of RocksDB and used directIO for
file system operations.

Figure 2 shows latency breakdown results with RocksDB Get,
P2P communication, data layout extraction (Extract Layout), and
cudaMemcpy. We observed that for RocksDB, most of the latency
is dedicated to I/O operations for RocksDB Get, which involves
reading RocksDB files such as bloom filters, index blocks, and data
blocks from an SSD. RockDB uses cudaMemcpy to copy data from
host memory to GPU memory. The latency contribution of cud-
aMemcpy is negligible. On the other hand, surprisingly, RocksDB
w/ P2P has higher latency than RocksDB.

RocksDB w/ P2P has almost the same contribution amount of I/Os
for RocksDB Get as RocksDB. This is because RocksDB has to read
metadata blocks of SSTable files such as bloom filter blocks to check
if there exist values corresponding to keys, and it has to read entire
SSTable files. RocksDBw/ P2P uses P2P for data transfer. P2P transfer
adds a significant amount of latency compared to RocksDB. RocksDB
w/ P2P should actually read data from an SSD’s NAND flash. Note
that NAND reads are much slower than DRAM reads. However,
RocksDB moves data from the host’s memory to GPU memory,
which is much faster than the P2P communication from SSD to GPU.
In addition, RocksDB w/ P2P has some overhead for extracting LBAs
of the data to be transferred for P2P. This contributes a negligible
amount of latency because the layout information is in the inode
of the file and most of the inodes are already cached in the main
memory by previous file system I/Os for SSTable files. Compared to
RocksDB and RocksDB w/P2P, GPUKV (Ideal) has the lowest latency,
less than half their latency.

In this paper, we propose GPUKV, which does not require inter-
actions with the database and file system for P2P by using key-value
SSDs. GPUKV aims to have a latency close to that of GPUKV (Ideal).
Because KVSSD manages key-value pairs internally inside an SSD,
the overhead of extracting LBAs is much less and the host applica-
tion does not need to care about data alignment for P2P. In addition,
GPUKV is designed to directly issue key-value requests (GET, PUT)

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea M. Jung et al.

Host

User
Space

Kernel
Space

SSD
Controller

SSD

Storage

GPU kernel

GPU Memory

GPU

GPU Control Path

Data Path

CPU Control Path

Application

Key-Value
Driver

GPUKV
Driver

(a) P2P data transfer to GPU with KVSSD

PRP List

Entry 0

Entry 1

Entry 2

GPUKV Driver

GPU

P2P available space

Namespace ID

Key

Value Size

PRP1 PRP2

New OpCode

Command ID

Namespace ID

Key

New OpCode

Command ID

KV Command DeleteKV Command GET

Namespace ID

Key

Value Size

PRP1 PRP2

New OpCode

Command ID

KV Command PUT

GPU
Memory

Existing part

KV Extension part

(b) Key-Value command extension of NVMe protocol

Figure 3: Data transfer with P2P from KVSSD to GPU in GPUKV

while executing the GPU kernel. Thus, it enables GPU-driven com-
puting, excluding CPUs.

3 GPUKV FRAMEWORK
In this section, we present our design and implementation for the
GPUKV framework.

3.1 System Architecture
GPUKV consists of the following three technologies: (i) Key-value
abstraction for GPU that allows key-value requests while executing
the GPU kernel, (ii) embedding key-value store in an SSD, and (iii)
zero-copy kernel-bypass communication by P2P when loading data
from KVSSD to GPU.

GPUKV provides a key-value store abstraction to the GPU, so
the GPU kernel can issue key-value requests to KVSSD while it is
running. Basic key-value operations are point queries, which are
key-value commands such as GET, PUT and DELETE. Table 1 shows
the prototype of the GPUKV API. All API operations take a key as
a parameter in common, while gpukv_get and gpukv_put require
value_size and buffer. Also, buffer is the address of the PCIe
P2P-enabled GPU memory for the value. Key-value commands are
sent to KVSSD via the GPUKV Driver.

Figure 3 shows data transfer with P2P from KVSSD to GPU
and key-value command specification for KVSSD. Specifically, Fig-
ure 3(a) shows a diagram of the system architecture for GPUKV.
The GPUKV Driver is the core module that conveys key-value
commands from GPU to KVSSD and prepares P2P data transfer.
The GPUKV Driver conveys key-value commands to the Key-Value
Driver using remote procedure call (RPC) implemented using GPU
shared memory. We extended a Linux NVMe Driver to support
Key-Value NVMe commands and P2P data transfer. The Key-Value
Driver issues NVMe commands to KVSSD on behalf of the GPUKV
Driver. Destination addresses of the NVMe command are filled with
P2P-capable GPU memory addresses. Therefore, the GPU kernel

receives key-value data directly from KVSSD in P2P-capable GPU
memory addresses.

Key-value requests are processed asynchronously in batches. The
GPUKV Driver is implemented employing two CPU threads: The
Issue thread and Completion thread. Issue thread batches at most
32 key-value requests and issues NVMe commands asynchronously.
Batch size is determined based on the number of threads in a single
warp of GPU. In the meantime, the Completion thread waits for the
completion of NVMe commands. When the Completion thread no-
tices the completion of any NVMe command issued, it immediately
informs the GPUKV Driver so that RPC from GPU can be returned
and resume computation with the request value.

The Key-Value Driver running in the host conveys key-value
requests from the GPUKV Driver to KVSSD. To support key-value
requests and P2P data transfers, we extended the NVMe protocol
to support Key-Value operations and modified the Linux NVMe
driver. Figure 3(b) shows the extended NVMe protocol for key-
value commands. The opcode area specifies GET, PUT and DELETE
operations using vendor-specific opcodes in the NVMe protocol.
We used the starting LBA area in the NVMe commands to specify
a key with a length of 8 bytes. PUT and GET commands use the
page list for the value. However, because of its variable size, the
length of the value may not be expressed with the block size and
the number of blocks. To solve this problem, we used the reserved
area of the NVMe command to specify the length of the value for
PUT, and the size of the buffer for GET.

Table 1: GPUKV API for KV Command

Command Function Parameters
GET gpukv_get key, value_size, buffer

PUT gpukv_put key, value_size, buffer

DELETE gpukv_delete key

GPUKV SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

gpukv_get
(key, value_size, offset)

Issue KV operation
using RPC

GPU

Enqueue
KV operation

kv_p2p_get
(kv_operations)

Generate
KV Commandsnvme_submit_cmd

Kernel Space
RPC
Ack

Complete
Polling

Waked up when
command completed

GPU thread
Host Issue thread
Host Completion thread

User Space

(Interrupt)

Figure 4: Functional flow of GPUKV

Meanwhile, the Physical Region Page (PRP) list in the NVMe
command includes the page addresses of the data. For P2P with
GPU, the PRP list needs to be filled with physical addresses of the
P2P-available regions in the GPU memory. To this end, we used
nvidia_p2p_get_pages to pin the pre-allocated GPU memory and
map the pinned GPU memory to the DMA address space for P2P
communication. Also, the NVIDIA API provides a page table of the
pinned GPU memory. The Key-Value Driver stores this page table
during initialization. Then, it translates the buffer passed from the
GPU kernel to a physical address to fill the PRP list in the NVMe
command.

3.2 Functional Flow of Get Operation
Figure 4 shows the functional flow of how GPUKV handles
gpukv_get. When the GPU thread calls gpukv_get, the request
information is pushed to the request queue in the GPU shared
memory. The request queue is a shared memory that CPU and GPU
threads can see. The GPU thread waits for the completion of the
request by polling the status of the RPC request. In the meantime,
the Issue thread in the host-side waits for new key-value requests
by polling the request queue. When the Issue thread fetches a batch
of key-value requests, it issues commands to the Key-Value Driver.
Then the Key-Value Driver builds NVMe requests based on buffer
and value_size in the request information. It fills the (PRP) lists
using the page table of the pinned GPU memory. After that, NVMe
commands are issued to KVSSD, and KVSSD transfers values to the
GPU directly via P2P, which is a zero-copy kernel-bypass communi-
cation. On completion of an NVMe command, KVSSD wakes up the
Completion thread. Then the Completion thread updates the status
of the RPC requests. Finally, the GPU kernel notices completion and
continues its computation. Meanwhile, the GPU kernel has waited
for the RPC request completion by polling. Currently, GPUKV sup-
ports P2P only for Get operation. Put operation is performed by
asynchronous buffered I/O through the CPU.

4 EVALUATION
In this section, we describe the experimental setup followed by the
GPUKV evaluation.

4.1 Evaluation Setup
Implementation.We (i) extendedGPUfs [22] to build a framework
for GPUKV that issues key-value operations to KVSSD when exe-
cuting the GPU kernel, and (ii) developed hash-map based KVSSD
on the Cosmos+ OpenSSD Platform [18], the detailed specifications
of which are shown in Table Table 2. Experiments were performed
on an Intel 4 Core server equipped with NVIDIA Quadro P4000.
Hardware details of the server and GPU are shown in Table 3 and 4,
respectively.

In particular, to evaluate the performance/resource use efficiency
of GPUKV according to the host’s CPU performance, we modified
the CPU settings of the server for two different configurations:
high-end server (4 cores, 3.5GHz CPU) and low-end server (2 cores,
800MHz CPU). Note that the low-end server has lower CPU clock
speeds and fewer CPUs than the high-end server.

Workload.We used both synthetic and realistic workloads to
evaluate GPUKV. We developed an in-house benchmark for syn-
thetic workload, which can simulate various data access patterns of
GPU applications. The data access pattern of GPU applications is
divided into streaming and dynamic. Streaming has predictable data
access patterns. Therefore, the GPU kernel can expect to increase
I/O performance by prefetching the next input dataset. By contrast,
Dynamic has unpredictable data access patterns, thus prefetching
does not help I/O performance.

For realistic workloads, we used GARDENIA [29], a graph pro-
cessing benchmark. Among the various workloads of GARDENIA,
we selected two representative workloads, Page Rank (PR) and
Breadth-First Search (BFS). PR is a workload that scores relevance
between web pages. PR updates the scores of pages over several
rounds using their connectivity information and scores calculated
in previous rounds. PR has a streaming data access pattern. In the
workload, when updating the scores, vertex pages are updated col-
lectively. By contrast, BFS is a dynamic data access pattern because

Table 2: Cosmos+ OpenSSD Platform Specification

SoC
Xilinx Zynq-7000
ARM Cortex-A9 (up to 1000MHz)
HYU Tiger 4 Controller (NVMe Controller in
FPGA)

NAND Module 500 GB module, NVDDR2
4-Channel, 8-Way

Interconnect PCIe Gen2 8-lane
FTL Page-level Mapping, On-demand GC

Table 3: Host Machine Specification

CPU Intel Core i5-4690@3.5GHz 4C/4T
RAM DDR3 4GB × 2
OS Kernel Linux Kernel 4.1.52

Table 4: GPU Specification

GPU model NVIDIA Quadro P4000 (CUDA ver. 10.1)
Interconnect PCIe Gen3 8-lane
Memory GDDR5 8GB
BAR memory 256MB (P2P enabled)

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea M. Jung et al.

Conv. Approach
(a) High-end server

256164GPUKV

E
xe

cu
tio

n
Ti

m
e

(s
)

0

100

200

300

400

500

600

 CPU I/O Threads (#)
Conv. Approach

GPUKV KVSSD RocksDB(C) RocksDB(NC)

(b) Low-end server

256164GPUKV
0

100

200

300

400

500

600

 CPU I/O Threads (#)

Figure 5: Streaming Workload (𝑊𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔)

Conv. Approach
(a) High-end server

256164GPUKV

E
xe

cu
tio

n
Ti

m
e

(s
)

0

100

200

300

400

500

600

 CPU I/O Threads (#)
Conv. Approach

GPUKV KVSSD RocksDB(C) RocksDB(NC)

(b) Low-end server

256164GPUKV
0

100

200

300

400

500

600

 CPU I/O Threads (#)

Figure 6: Dynamic Workload (𝑊𝐷𝑦𝑛𝑎𝑚𝑖𝑐)

the next set of vertices is not predictable and can only be known
when the current search step is complete. We stored graph datasets
for PR and BFS in KVSSD using vertex ID as the key and the list
of edge information (a pair of destination vertex ID and weight of
edge) as its value. For the input dataset, we used roadNet-CA [12]
from a graph repository [20]. RoadNet-CA is a road network graph
of California with 1,971,281 vertices and 5,533,214 edges. The total
data size of the graph in the key-value store is about 7.5 GB.

Comparison. We compared GPUKV with the following four
systems:

• GPUKV: It directly communicates with KVSSD via P2P com-
munication. The GPU kernel is launched only once because
key-value I/O operations are issued while executing the GPU
kernel.

• KVSSD: The host’s application can directly communicate
with KVSSD, allowing it to bypass the file system. However,
unlike GPUKV, it has to use cudaMemcpy to feed data to the
GPU’s memory every time the GPU kernel needs it.

• RocksDB(C): RocksDB runs on the Ext4 file system. Input
data for GPU kernels have to be copied using cudaMemcpy
of the host’s CPU. Similar to KVSSD, data has to be fed to the
GPU every time the GPU kernel needs it. RockDB’s cache is
enabled and buffered I/O is used.

• RocksDB(NC): This is the same as RocksDB(C) except that
RocksDB’s cache is disabled and directIO is used.

Among the systems presented above, GPUKV is a representative
GPU-based computing model, while other systems such as KVSSD,
RocksDB (C), and RocksDB (NC) are representative CPU-based GPU
computing models in which the host’s application is responsible
for moving data from storage devices to the GPU.

4.2 Performance Analysis
We first show the results for synthetic workloads and then show
the results for realistic workloads.

4.2.1 Synthetic Workloads. We experimented with streaming pat-
terns and dynamic patterns of key-values of 4 million 4KB sized
values. Figure 5 and 6 show the measurements of total execution
times for streaming and dynamic pattern workloads, respectively.
In particular, for CPU-driven GPU computing models (KVSSD,
RocksDB(C), and RocksDB(NC)), we experimented with increasing
the number of CPU I/O threads. Note that in the figure, they are

called the conventional approach (Conv. Approach). Increasing the
number of I/O threads accelerates data movement to the GPU and
reduces the execution time of the GPU kernel, but increases CPU
use. Note that GPUKV does not use I/O threads for data movement
on the CPU since GPU kernels and KVSSD can transfer data directly
via P2P communication. GPUKV just uses two I/O command issue
threads – Issue thread and Completion thread, which are not I/O
threads that actually move data to GPU memory.

Streaming Pattern Workload Results. Figure 5(a) and (b)
show the results for streaming workloads (𝑊𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔) on high-
end and low-end servers, respectively. In Figure 5(a), KVSSD and
RocksDB(C/NC) have lower execution times as the CPU’s I/O thread
count increases. This is because parallel I/O can overlap memory
copy operations from host memory to GPU memory, thus reducing
the time caused by I/O. This pipeline effect between them max-
imizes the performance of each system. For example, when the
I/O thread count is 256, KVSSD and RocksDB(C/NC) reach similar
execution times as GPUKV. However, KVSSD and RocksDB(C/NC)
require 256 threads, whereas GPUKV does not. On the other hand,
even if GPUKV uses two I/O command issue threads, it outper-
forms KVSSD and RocksDB(C/NC). Note that these I/O command
issues threads can be eliminated if the GPU kernel can operate the
NVMe driver directly and issue NVMe commands to KVSSD. This
observation explains why GPUKV needs less host-side resources
such as CPU cycle and memory than KVSSD and RocksDB(C/NC).

Figure 5(b) depicts the results on the low-end server. Over-
all, we observed performance trends similar to Figure 5(a). How-
ever, compared to Figure 5(a), KVSSD and RocksDB(C/NC) had
higher execution times. This is because of less powerful host CPUs.
KVSSD shows a small performance drop of 19% on average, while
RocksDB(C) and RocksDB(NC) show large performance drops of
41% and 50% on average, respectively. KVSSD and RocksDB(C/NC)
use the host’s CPU cycle and memory, and thus their performance
is strongly affected by the host’s CPU performance. The perfor-
mance of KVSSD is less affected by host CPU performance than
RocksDB(C/NC). This is because KVSSD bypasses the file system.
However, in RocksDB(C/NC), it has to go through a heavy I/O soft-
ware stack such as the file system and page cache, so it requires
a high dependency on the host’s CPU performance. On the other
hand, GPUKV, which rarely uses the host’s resources, has little
performance degradation.

GPUKV SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

Conv. Approach
(a) High-end server

256164GPUKV

E
xe

cu
tio

n
Ti

m
e

(s
)

0

200

400

600

800
1200
1400
1600

 CPU I/O Threads (#)
Conv. Approach

(b) Low-end server

GPUKV KVSSD RocksDB(C) RocksDB(NC)

256164GPUKV
0

200

400

600

800
1200
1400
1600

 CPU I/O Threads (#)

Figure 7: Page Rank (PR)

Conv. Approach
(a) High-end server

256164GPUKV

E
xe

cu
tio

n
Ti

m
e

(s
)

0

50

100

150

200

250

300

 CPU I/O Threads (#)
Conv. Approach

(b) Low-end server

256164GPUKV

GPUKV KVSSD RocksDB(C) RocksDB(NC)

0

50

100

150

200

250

300

 CPU I/O Threads (#)

Figure 8: Breadth-First Search (BFS)

Dynamic Pattern Workload Results. Figure 6(a) shows the
results for dynamic workloads in the high-end server. We observed
that the performance gain of GPUKV is much higher in𝑊𝐷𝑦𝑛𝑎𝑚𝑖𝑐

than𝑊𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 . This is because CPU-driven GPU computing mod-
els (KVSSD and RocksDB(C/NC)) cannot overlap computation time
and I/O time at all in dynamic data access pattern workloads. Un-
like streaming workloads, the next dataset to be loaded in dynamic
workloads can be known only when the current kernel execution is
complete. Thus, prefetching does not help in the dynamic workload.
In particular, we saw that KVSSD has lower execution times than
RocksDB(C). Figure 6(b) depicts the results of the lower-end sys-
tem. Overall, we observed that CPU-driven GPU computing models
(KVSSD and RocksDB(C/NC)) had increased execution times due
to less power CPUs.

In summary, in Figure 5 and 6, it can be seen that GPUKV had
the lowest execution time in high-end and low-end servers. Other
CPU-driven GPU computing models require a large number of I/O
threads to achieve an execution time similar to GPUKV. In other
words, in our prototype, GPUKV enables GPU-driven computing
with very little dependence on the host’s CPU.

4.2.2 Realistic Workloads. Figure 7 and 8 show the results for PR
and BFS workloads. Note that PR is a streaming pattern workload,
whereas BFS is a dynamic pattern workload. Figure 7 shows the
results for PR. We have similar observations as Figure 5. Figure 7(a)
depicts the results on the high-end server. It clearly shows the
performance difference between GPUKV and CPU-driven GPU
computing models (KVSSD and RocksDB (C/NC)). RocksDB has
lower execution times when the number of I/O threads increases,
but it still has a higher execution time than GPUKV. When 256 I/O
threads are used, RocksDB(C) has 1.3 times and RocksDB(NC) has
1.6 times higher execution times than GPUKV. On the other hand,
KVSSD, which has a simpler I/O software stack than RocksDB, has
a similar execution time asGPUKVwhen the number of I/O threads
is 256. Figure 7(b) shows the results on the low-end server. Overall,
KVSSD and RocksDB have increased execution times compared
to the high-end server. In particular, we observed that even if the
number of I/O threads is 256, KVSSD has a higher execution time
than GPUKV.

Figure 8 depicts the results for BFS. Interestingly, in Figure 8(a),
we observed that RocksDB(C) has a lower execution time than
GPUKV when more than 16 I/O threads are used. This is because
in BFS, the data size is small and there is a big caching advantage in

RocksDB(C) due to the small workload size. However, in Figure 8(b)
where the low-end server is used, there is no benefit from caching,
and GPUKV has the lowest execution time.

4.3 Resource Usage Analysis
We confirmed in previous experiments that GPUKV’s performance
is not affected by the host’s CPU performance. On the other hand,
it was confirmed that the performance of KVSSD and RocksDB is
highly sensitive to the host’s CPU performance. In this experiment,
we evaluate how littleGPUKV uses the host’s CPU cycles compared
to KVSSD and RocksDB. We used synthetic streaming workloads
(𝑊𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐) for evaluation.

Figure 9 shows the result of the breakdown of CPU cycles con-
sumed by each server configuration according to I/O Request Han-
dling, Thread Management, Polling, and Others. IO Request Handling
refers to CPU cycles consumed in processing IO Requests in each
server configuration. Thread Management refers to CPU cycles
consumed in thread creation, join, etc. when processing I/O with
multiple threads in KVSSD and RocksDB. Polling refers to CPU
cycles consumed when polling the shared memory for RPC commu-
nication. Others in the graphs show the CPU cycles consumed for
context switch, thread synchronization, and other software over-
head. In Figure 9, KVSSD and Rocks used 256 I/O threads on the
high-end server, and they used 4 I/O threads on the low-end server.
By contrast,GPUKV uses only two CPU I/O command issue threads.
In Figure 9, all results are normalized to the CPU cycles used by
GPUKV.

First, we analyzed the CPU cycles consumed by GPUKV. CPU
cycles consumed by GPUKV in Figure 9(a) are about 4.3 times
higher than that of Figure 9(b). This is because the high-end server
has more CPU cores and faster CPU speed than the low-end server.
GPUKV waits for key-value requests from the GPU through the
GPUKV driver. Also, since there is no interrupt support between
the host and GPU, the host has to poll the shared memory between
the host and GPU and wait for the request. However, polling is
unnecessary if (i) the request can be sent directly from the GPU to
the SSD controller or (ii) an interrupt between the host and GPU
is allowed. In Figure 9(a), polling occupies 96% of the consumed
CPU cycles, and 70% in Figure 9(b). From these results, we can
see that in our prototype, GPUKV is significantly consuming CPU
cycles by polling. However, we note that the polling overhead can
be eliminated if the aforementioned techniques are adopted.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea M. Jung et al.

(b) Low-end server(a) High-end server
GPUKV KVSSD RocksDB(C) RocksDB(NC)

A
gg

r.
C

PU
 C

yc
le

s
no

rm
al

iz
ed

 w
.r.

t G
PU

K
V

0
0.02
0.04
0.06
0.08
0.1
0.4
0.6
0.8

1
80

110
140
170
200

IO Request Thd. Mgmt. Polling Others.

GPUKV KVSSD RocksDB(C) RocksDB(NC)
0

0.05
0.1

0.15
0.2

0.25
0.3

1
3
5
7
9

Figure 9: Normalized CPU utilization with respect to
GPUKV for wynthetic streaming workloads (𝑊𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔).
The CPU cycles of GPUKV measured on high-end and low-
end servers are 2.07 × 1011 and 4.78 × 1010 respectively.

Next, we analyzed the CPU cycles consumed by KVSSD and
RocksDB. As expected, IO request handling accounts for more than
half of the total CPU cycles in KVSSD and RocksDB. They con-
sume many more CPU cycles than GPUKV. Note that KVSSD and
RocksDB used 256 I/O threads. Referring to the results in Figure 5(a),
the execution times of KVSSD and RocksDB when using 256 I/O
threads are close to GPUKV. However, as observed in Figure 9,
KVSSD and RocksDB consumed two to 117 times more CPU cycles
than GPUKV.

5 RELATEDWORK
P2P Communication. There have been studies on allowing direct
access to the file system from GPUs [1, 22]. GPUfs [22] uses shared
memory for communication between the host and GPU, which
allows the kernel running on the GPU to perform I/O operations
using a file system API. SPIN [1] also extends GPUfs to implement
data transfer to the GPU using the CPU’s page cache. In particu-
lar, SPIN proposed a hybrid algorithm that opportunistically uses
both page cache and P2P communication when transmitting data
from SSD to GPU. However, both GPUfs [22] and SPIN [1] rely
on the host’s file system to find the block layout of the file when
performing P2P, so they use host resources considerably.

In-Storage-Processing (ISP) SSD. Summarizer [10] and
GraphSSD [15] offload the host’s CPU tasks to the SSD and
execute them using its hardware resources. Summarizer [10]
reduces communication overhead between the host processor
and SSDs by analyzing TPC-H queries and offloading only
data-intensive query tasks to the SSD processor. In addition, a
method of properly setting the query offload ratio considering the
computational efficiency of the SSD and communication overhead
was proposed. GraphSSD [15] is an SSD that recognizes graph
semantics and can perform graph processing inside the SSD,
minimizing the communication overhead between the host and the
SSD. When storing raw data, the SSD processor transforms data
into a graph semantic aware format and stores it.

Key-Value SSD. Several works [6, 9, 11] have suggested KVSSDs
that utilize ISPs to implement key-value storage inside SSDs. The
host’s key-value store is offloaded to an SSD and runs within the
SSD. KVSSD extends the NVMe command to send a key-value

request to the SSD. In particular, Transaction [9] proposed a com-
pound command that can minimize I/O interface overhead with the
SSD by merging multiple key-value pairs in one NVMe operation.
iLSM [11] implements a log structure merge tree in firmware for
key-value pair management. These KVSSDs completely move away
from the file system overhead, simplifying the I/O stack. Pink [6]
compared and analyzed various data structures such as hash and
LSM for KVSSD design.

Heterogeneous Computing. Heterogeneous computing refers to a
system composed of high-speed main host processors and slow but
large-scale parallel co-processors (CPU-GPU). In this system, the
CPU and GPU can execute the workload cooperatively, improving
performance [2, 4, 5, 14, 16]. However, in these systems, when the
GPU and CPU share data in the page cache, problems such as data
inconsistency and false sharing occur. Qilin [14] automated com-
putational mapping, distributing work within the heterogeneous
systems. Solros [16] used the Xeon Phi co-processor, and proposed
an OS that can use it efficiently by delegating a complex I/O stack to
a high-speed host processor. GAIA [2] solved the problem of false
sharing and data inconsistency by integrating the GPU memory
and the OS page cache.

6 CONCLUSION
In a system environment where the key-value store is running on
the host’s file system, it has to go through a complex I/O stack to
supply input data to the GPU kernel. Previously, P2P communi-
cation was proposed, allowing the GPU and SSD to communicate
directly without memory copy operations. However, in order to
copy data from the key-value store that stores unstructured data to
GPU memory, CPU intervention for interaction with the database
or file system cannot be avoided.

In this paper, we proposed GPUKV, a framework where KVSSDs
and GPUs perform direct P2P communication to bypass complex
I/O stacks for loading data into GPU memory. In GPUKV, the GPU
kernel sends key-value requests directly to KVSSDs. Then, KVSSDs
can transfer data directly to GPUs without the intervention of the
CPU, enabling full GPU-driven computing. We used both synthetic
and realistic workloads for evaluation. Our extensive evaluation
results show that for most workloads, GPUKV results in the lowest
execution time with minimal host resource usage such as CPU cycle
and memory compared to conventional CPU-based GPU computing
models.

ACKNOWLEDGMENTS
This work was supported by a research grant from SK hynix.

REFERENCES
[1] Shai Bergman, Tanya Brokhman, Tzachi Cohen, and Mark Silberstein. 2017. SPIN:

Seamless Operating System Integration of Peer-to-peer DMA between SSDs and
GPUs. In In Proceedings of the USENIX Annual Technical Conference (USENIX ATC
’17). 167–179.

[2] Tanya Brokhman, Pavel Lifshits, and Mark Silberstein. 2019. GAIA: An OS
Page Cache for Heterogeneous Systems. In In Proceedings of the USENIX Annual
Technical Conference (USENIX ATC ’19). 661–674.

[3] Chanwoo Chung, Jinhyung Koo, Junsu Im, Arvind, and Sungjin Lee. 2019. Light-
Store: Software-defined Network-attached Key-value SSD Drives. In Proceedings
of the 24th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’19). 939–953.

[4] Prince Hamandawana, Awais Khan, Chang-Gyu Lee, Sungyong Park, and Young-
jae Kim. 2020. Crocus: Enabling Computing Resource Orchestration for Inline

GPUKV SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

Cluster-wide Deduplication on Scalable Storage Systems. IEEE Transactions on
Parallel & Distributed Systems 31, 08 (August 2020), 1740–1753.

[5] Anakhi Hazarika, Soumyajit Poddar, and Hafizur Rahaman. 2020. Survey on
Memory Management Techniques in Heterogeneous Computing Systems. IET
Computers & Digital Techniques 14, 2 (February 2020), 47–60.

[6] Junsu Im, Jinwook Bae, Changwoo Chung, Avind, and Sungjin Lee. 2020. PinK:
High-speed In-storage Key-value Store with Bounded Tails. In In Proceedings
of the USENIX Conference on File and Storage Technologies (USENIX FAST ’20).
173–187.

[7] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven Swanson.
2017. KAML: A Flexible, High-performance Key-value SSD. In In Proceedings of
the IEEE International Symposium on High Performance Computer Architecture
(HPCA ’17). 373–384.

[8] Yangwook Kang, Rekha Pitchumani, Pratik Mishra, Yang-suk Kee, Francisco
Londono, SangyoonOh, Jongyeol Lee, and Daniel DG Lee. 2019. Towards Building
A High-performance, Scale-in Key-value Storage System. In Proceedings of the
12th ACM International Conference on Systems and Storage (Systor ’19). 144–154.

[9] Sang-Hoon Kim, Jinhong Kim, Kisik Jeong, and Jin-Soo Kim. 2019. Transaction
Support Using Compound Commands in Key-value SSDs. In In Proceedings of the
11th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage ’19).

[10] Gunjae Koo, Kiran Kumar Matam, I Te, HV Krishna Giri Narra, Hung-Wei Li, Jing
an Tseng, Steven Swanson, and Murali Annavaram. 2017. Summarizer: Trading
Communication with Computing Near Storage. In In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO ’17).
219–231.

[11] Chang-Gyu Lee, Hyeongu Kang, Donggyu Park, Sungyong Park, Youngjae Kim,
Jungki Noh, Woosuk Chung, and Kyoung Park. 2019. iLSM-SSD: An Intelligent
LSM-Tree Based Key-value SSD for Data Analytics. In In Proceedings of the IEEE
27th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS ’19). 384–395.

[12] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009.
Community Structure in Large Networks: Natural Cluster Sizes and The Absence
of Large Well-Defined Clusters. Internet Mathematics 6, 1 (2009), 29–123.

[13] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and Steven
Swanson. 2016. HippogriffDB: Balancing I/O and GPU Bandwidth in Big Data
Analytics. Proc. VLDB Endow. 9, 14 (2016), 1647–1658.

[14] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. 2009. Qilin: Exploiting Paral-
lelism on Heterogeneous Multiprocessors with Adaptive Mapping. In In Proceed-
ings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO ’09). 45–55.

[15] Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Murali
Annavaram. 2019. GraphSSD: Graph Semantics Aware SSD. In Proceedings of the
46th International Symposium on Computer Architecture (ISCA ’19). 116–128.

[16] Changwoo Min, Woonhak Kang, Mohan Kumar, Sanidhya Kashyap, Steffen
Maass, Heeseung Jo, and Taesoo Kim. 2018. Solros: A Data-centric Operating
System Architecture for Heterogeneous Computing. In Proceedings of the 13th
EuroSys Conference (EuroSys ’18). 1–15.

[17] NVidia. 2020. GPUDirect RDMA. https://docs.nvidia.com/cuda/gpudirect-rdma/.
[18] OpenSSD. 2017. Cosmos Plus OpenSSD Platform. http://openssd.io/.
[19] RocksDB. 2020. RocksDB. https://rocksdb.org/.
[20] Ryan A. Rossi and Nesreen K. Ahmed. 2013. Graph Repository. http://www.

graphrepository.com.
[21] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo Liu, and

Qiang-Sheng Hua. 2018. Graph Processing on GPUs: A Survey. ACM Comput.
Surv. 50, 6 (January 2018), 1–35.

[22] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. 2013. GPUfs:
Integrating A File System with GPUs. In Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13). 1–13.

[23] Hyogi Sim, Youngjae Kim, Sudharshan S Vazhkudai, Devesh Tiwari, Ali Anwar,
Ali R Butt, and Lavanya Ramakrishnan. 2015. Analyzethis: An AnalysisWorkflow-
aware Storage System. In SC’15: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 1–12.

[24] Hyogi Sim, Geoffroy Vallee, Youngjae Kim, Sudharshan S Vazhkudai, Devesh
Tiwari, and Ali R Butt. 2018. An Analysis Workflow-aware Storage System for
Multi-core Active Flash Arrays. IEEE Transactions on Parallel and Distributed
Systems 30, 2 (2018), 271–285.

[25] Bruno Stefanizzi. 2014. DirectGMA on AMD’s FIREPRO GPUs. http://developer.
amd.com/wordpress/media/2014/09/DirectGMA_Web.pdf.

[26] Devesh Tiwari, Simona Bobila, Sudharshan Vazhkudai, Youngjae Kim, Xiaosong
Ma, Peter Desnoyers, and Yan Solin. 2013. Active Flash: Towards Energy-efficient,
In-situ Data Analytics on Extreme-scale Machines. In In Proceedings of the USENIX
Conference on File and Storage Technologies (USENIX FAST ’13). 119–132.

[27] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark Gahagan, and Steven Swan-
son. 2016. Morpheus: Creating Application Objects Efficiently for Heterogeneous
Computing. SIGARCH Comput. Archit. News 44, 3 (June 2016), 53–65.

[28] Sung-Ming Wu, Kai-Hsiang Lin, and Li-Pin Chang. 2018. KVSSD: Close Integra-
tion of LSM Trees and Flash Translation Layer for Write-efficient KV Store. In In

Proceedings of the Design, Automation & Test in Europe Conference & Exhibition
(DATE ’18). 563–568.

[29] Zhen Xu, Xuhao Chen, Jie Shen, Yang Zhang, Cheng Chen, and Canqun Yang.
2019. GARDENIA: A Graph Processing Benchmark Suite for Next-Generation
Accelerators. ACM Journal on Emerging Technologies in Computing Systems
(JETC) 15, 1 (2019), 1–13.

[30] Jie Zhang, David Donofrio, John Shalf, Mahmut T. Kandemir, and Myoungsoo
Jung. 2015. NVMMU: A Non-volatile Memory Management Unit for Heteroge-
neous GPU-SSD Architectures. In In Proceedings of the International Conference
on Parallel Architecture and Compilation (PACT ’15). 13–24.

https://docs.nvidia.com/cuda/gpudirect-rdma/
http://openssd.io/
https://rocksdb.org/
http://www.graphrepository.com
http://www.graphrepository.com
http://developer.amd.com/wordpress/media/2014/09/DirectGMA_Web.pdf
http://developer.amd.com/wordpress/media/2014/09/DirectGMA_Web.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Data Transfer from Key-Value Store to GPU
	2.2 Motivation

	3 GPUKV Framework
	3.1 System Architecture
	3.2 Functional Flow of Get Operation

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Performance Analysis
	4.3 Resource Usage Analysis

	5 Related Work
	6 Conclusion
	References

