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Abstract—Inline deduplication dramatically improves storage space utilization. However, it degrades I/O throughput due to compute-

intensive deduplication operations such as chunking, fingerprinting or hashing of chunk content, and redundant lookup I/Os over the

network in the I/O path. In particular, the fingerprint or hash generation of content contributes largely to the degraded I/O throughput

and is computationally expensive. In this article, we propose CROCUS, a framework that enables compute resource orchestration to

enhance cluster-wide deduplication performance. In particular, CROCUS takes into account all compute resources such as local and

remote {CPU, GPU} by managing decentralized compute pools. An opportunistic Load-Aware Fingerprint Scheduler (LAFS),

distributes and offloads compute-intensive deduplication operations in a load-aware fashion to compute pools. CROCUS is highly generic

and can be adopted in both inline and offline deduplication with different storage tier configurations. We implemented CROCUS in Ceph

scale-out storage system. Our extensive evaluation shows that CROCUS reduces the fingerprinting overhead by 86 percent with 4KB

chunk size compared to Ceph with baseline deduplication while maintaining high disk-space savings. Our proposed LAFS scheduler,

when tested in different internal and external contention scenarios also showed 54 percent improvement over a fixed or static

scheduling approach.

Index Terms—Distributed file systems, scheduling, storage management

Ç

1 INTRODUCTION

THE explosive increase in data has made the problems of
data storage space worse in the cloud [1], [2]. Cloud pro-

viders employ shared-nothing scale-out storage systems
(SN-SS) such as Ceph [3] and GlusterFS [4] for high perfor-
mance, scalability, and availability and to seamlessly suffice
storage demands. In recent years, data deduplication [5],
[6], [7], [8], a capacity optimization technique that is being
used to dramatically improve storage efficiency, has
emerged as an effective alternative to compression in
backup storage for reducing storage demands. With the
emergence of high-speed SSDs, the trend towards deploy-
ing tiered hybrid architecture is gaining more importance
[9]. Configuring such hybrid systems (SSD and HDD) to
achieve performance goals at a minimum cost remains a
challenge [10]. Data deduplication on the SSDs would be at
the forefront of the tiered architectures to minimize storage
costs and increase SSD endurance without impairing stor-
age performance.

Deduplication can be applied to the SSD tier either
inline or offline. Inline deduplication introduces additional
latency and performance degradation in the I/O path,
whereas, offline deduplication requires high storage capac-
ity in order to stage data temporarily. In particular, addi-
tional latency and performance degradation in inline
deduplication are mainly attributed to compute-intensive
operations of deduplication. This includes dividing an
object into small fixed or variable-size chunks, computing
fingerprint (FP) against each chunk using hash functions
such as SHA1 or SHA512 and fingerprint indexing.
Recently, there have been studies that have implemented
cluster-wide inline deduplication in Ceph [11], [12]. These
studies implemented cluster-wide deduplication following
shared-nothing constraints, without impairing the scalabil-
ity and fault tolerance of scale-out storage systems [11],
[12]. However, in both studies, fingerprinting is computa-
tionally intensive, and in the case of small chunks, the per-
formance degradation becomes critical due to frequent
fingerprint operations.

Due to the many-core architectures in modern servers,
there exist opportunities to overcome such latency and per-
formance degradation problems in the current state of the
art deduplication systems [13], [14]. By leveraging such
powerful architectures, we can utilize the multi-threaded
invocation of fingerprint operations to enhance the dedupli-
cation performance. On the other end, the CPU usage trend
of the scale-out storage system suffocates the multi-thread
deduplication performance [13]. For example in Ceph, the
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frequent Object Storage Daemon (OSD) operations and
internal cluster traffic such as replication, heartbeat mes-
sages, and storage rebalancing generates high CPU load,
giving little room for performance improvement from the
multi-threaded invocation of FP operations [15]. Neverthe-
less, the availability of idle CPU resources across the cluster
creates opportunities to offload FP operations. Moreover,
most cloud providers are now investing heavily in GPU
equipped servers to handle compute-intensive work-
loads [16]. In the presence of GPUs in the cluster, the over-
head of FP operations can be minimized, because of their
high computing power, which is derived from their multi-
threaded and many core parallel architecture [17], [18].

On the flip side, the current deduplication systems does not
have a framework to utilize the computational power of idle
CPUs or GPUs in neighboring servers across the cluster. Con-
sequently, there is a need for an efficient communication
framework and a dynamic resource scheduler that maximizes
the use of available computational resources to enhance the
deduplication performance. To build such a framework, there
exist several challengeswhich need to be addressed. For exam-
ple, (i) there is a need for a framework that provides a global
view of the compute resources, that is, the distributed CPU
andGPU resources in the cluster. However, the framework for
providing a global view, when implemented in a centralized
manner, not only raises scalability issues but also violates the
design properties (shared-nothing) of the target architecture.
(ii) The framework should be adaptive to dynamic load chang-
ing scenarios, to subdue under or over-utilization of compute
resources. In this framework, reducingunnecessary data trans-
fer and communication overhead is paramount.

To address such challenges, we propose CROCUS, a
high-performance deduplication framework equipped with
effective compute resource management, which provides a
global view of the compute resources (CPU and GPU) avail-
able in the cluster. CROCUS offloads deduplication jobs to
each of the pool based on load-awareness using a multi-
stream communication model to enhance data transfer
and to minimize communication overhead. The proposed
framework is highly generic and can be adopted in both
inline and offline deduplication with different storage archi-
tectures such as single and multi-tier storage setups.

This paper makes the following specific contributions.

� We build CROCUS, a cluster-wide deduplication
framework for multi-tier hybrid storage architec-
tures, capable of eliminating duplicates with negligi-
ble performance degradation. CROCUS provides an
up-to-date view of available compute resources
(CPU/GPU), without violating the design properties
of shared-nothing storage systems.

� We design a simple yet dynamic Load-Aware
Fingerprint Scheduler (LAFS), which is an efficient
compute-resource orchestrator. LAFS parallelizes
inline deduplication operations on available comput-
ing resources such as local or remote CPU and GPU
across the cluster. It then distributes the compute-
intensive deduplication operations to idle CPU and
GPU resources in a load-aware fashion.

� We implement CROCUS in Ceph [3]. Our real test-
bed evaluation shows that CROCUS with LAFS

scheduler improves the fingerprinting performance
by 86 percent with 4 KB small chunks compared to a
LAFS-free system. In addition, we achieve high-disk
space savings using 4 KB small chunks with low per-
formance degradation of 6 percent compared to
Ceph without deduplication.

2 BACKGROUND AND MOTIVATION

2.1 Cluster-Wide Deduplication

Cluster-wide deduplication has been widely explored to
improve space efficiency in storage sytems. In general,
deduplication is adopted either inline or offline. However,
this design decision highly depends on the underlying stor-
age cluster, as it directly impacts its performance. For
instance, inline deduplication offers instant space savings
but at the cost of performance degradation as it includes
deduplication operations such as chunking, hashing and
duplicate lookup I/Os in the critical I/O path. On the con-
trary, offline deduplication also referred to as lazy dedupli-
cation requires a temporary data staging buffer space to
store data. Note that, the offline approach does not include
deduplication operation in the I/O critical path but incurs a
double write problem, that is, i) all incoming data is written
to the temporary staging buffer space and ii) then after
applying deduplication, unique data is written to perma-
nent storage again. This double write problem is harmful
when the storage used is SSDs. Moreover, offline deduplica-
tion requires certain controls, e.g., a size threshold on stag-
ing buffer space to trigger deduplication, which often
conflicts with incoming write I/Os. As our target system is
a shared-nothing tiered hybrid architecture, where SSD
servers overlay slow HDD based storage for higher perfor-
mance, deploying inline deduplication provides the best
choice due to limited SSD storage endurance and higher
cost ($/GB) issues.

Although the cluster wide deduplication has been
explored in several studies [11], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], these contemporary deduplication
techniques cannot be directly adopted because of two major
reasons; (i) They do not comply with the shared-nothing

Fig. 1. Overview of inline cluster-wide data deduplication [11].
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design property of the target architecture. (ii) They were
not designed to work effectively on scalable tiered hybrid
data storage model. There exist two most recent studies
which proposed cluster-wide data deduplication without
violating the design properties of shared-nothing storage
systems, [11], [12]. The work in [11] manages the dedupli-
cation metadata using the partitioned database approach
(DM-Shard), where each horizontally partitioned database
instance (also called DB-Shard) is tightly integrated to each
object storage node in the cluster as shown in Fig. 1. Each
DM-Shard stores two persistent data structures, i.e., Object
Map (OMAP) containing layout information of objects and
Chunk Information Table (CIT) containing sensitive dedu-
plication metadata such as chunk fingerprint, reference
count and consistency flag. On the other hand, [12] pro-
posed to handle the deduplication metadata in the form of
a content addressable object (CAO), which is stored just
like any other object in the underlying storage. In order to
access the metadata information, the use of the extended
attribute (xattr) is adopted. Both approaches assured con-
formity to the shared-nothing design constraint.

2.2 Motivation

To motivate our research, we first investigated the adoption
of the two recent inline cluster-wide deduplication techni-
ques, compatible with the shared nothing design storage
systems (CW-Dedup implementation [11] and CAO-Dedup
implementation [12]), on top of a hybrid tiered Ceph cluster.
We configured the Ceph cluster by using Testbed-I with no
active GPUs as shown in Table 1 (Section 5). We used the
fixed-size chunking algorithm and SHA-1 hash function to
compute the hash fingerprints for each data chunk. Note
that other content defined chunking methods such as
FASTCDC [14] can be applied to CROCUS. However, this
work focuses on overcoming the shortcomings of existing
deduplication frameworks. As workloads for evaluation,
we generated a total of 2 TB writes per client via the SPEC
SFS benchmark [29]. For this particular experiment, we
used 5 client nodes each hosting 16 threads issuing write
IOs. Note that we disabled GPUs on all the nodes of
Testbed-I to clearly investigate the influence of deduplica-
tion on performance. We issued random write requests to
the Ceph cluster and on each successive experiment, object
size was fixed to 4 MB but doubled the chunk size by 2. The
results in Fig. 2 show the outcome of our investigation on
the existing inline cluster-wide deduplication techniques.

Fig. 2a, shows that adopting the current deduplication
implementations [11], [12], introduces a huge performance

degradation as compared to the baseline without deduplica-
tion. This performance penalty is worse with small-sized
chunks. To investigate the cause of the performance over-
head, we carried out a time breakdown analysis on CW-
Dedup [11], for a single dedup IO. Fig. 2b shows the results.
CAO-Dedup [12] shows high performance penalty as com-
pared to CW-Dedup [11] due to the additional metadata
checks of CAO objects on storage. So, we focused our inves-
tigation of the performance penalty on CW-Dedup. Fig. 2b
shows the aggregated runtime for each deduplication oper-
ation for the whole dataset. We observed that the overhead
of computing fingerprints is considerably large. It contrib-
utes to more than 65 percent of the aggregated runtime.
Because the current implementation uses a single thread to
invoke hash operations, the overhead of fingerprinting is
quite high and a more robust approach is required to reduce
this performance penalty. Fig. 2c shows the CPU overhead
and storage space gain in the object storage server depend-
ing on the chunk size. The smaller chunk size benefits with
high space savings. However, small chunk sizes show high
CPU utilization which averages 65 percent across the stor-
age servers. On the contrary, the large chunk sizes result in
lower CPU occupancy but at the cost of low disk space sav-
ings. Even though the current deduplication implementa-
tion is single threaded, but fingerprinting operation shows
quite a high CPU utilization especially with the smaller
chunks which achieves more deduplication benefits.

2.3 Deduplication Improvement Opportunities

Since the current cluster-wide deduplication implementations
uses a single thread fingerprinting approach, opportunities to
improve the performance can arise with multi-threaded fin-
gerprinting invocations. Fig. 3a shows the results of employ-
ing multi-thread invocations of the hash function to compute
fingerprints on CW-Dedup and CAO-Dedup. We observe
that, for both implementations, using 16 threads will increase
the throughput, but the performance is still degraded as com-
pared to baseline with no deduplication. Nevertheless,
increasing to 32 threads does not improve any performance.
This is because fingerprint computation is a CPU bound oper-
ation. In scale-out storage systems, there are frequent object
storage daemon operations and continuous internal commu-
nication which enforces replication, load re-balancing and
node heartbeat messages. This generates high amounts of
CPU load and suppresses the performance improvement
from themulti-threaded dedup approach. In our case, the per-
formance saturates at 16 threads. However, in distributed
clusters, there exist pockets of CPU idle times or low CPU

Fig. 2. Performance analysis of cluster-wide deduplication when employed on hybrid Ceph cluster. We used Testbed-1 with SSDs, HDDs, and inac-
tive GPUs.
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utilization on object storage servers (OSSs). Fig. 3b shows a
snapshot of the CPU utilization of the SSD tier nodes on our
Ceph cluster, using 4 KB chunking, over a period of 90 sec-
onds during a write request to the cluster. These pockets of
low CPU utilization shown in the snapshot provide opportu-
nities to use computing resources on neighboring storage
servers when a server has no available computational
resources.

Futher, if cluster nodes are GPU equipped, then we can
leverage the massive parallelism provided by GPUs to accel-
erate the overhead of fingerprint computations. There are two
scenarios to adopt when setting up GPU nodes on the faster
SSD tier. One case is a homogeneous GPU-equipped SSD tier
and the other case is when not every server on the SSD tier is
GPU-equipped. However, the second case creates computa-
tional heterogeneity on the SSD tier. This heterogeneity leads
to some bottleneck, since the CPU based fingerprinting of
non-GPU servers slows down the I/O performance. We
explain this problem using Fig. 4, where objecta is striped into
multiple smaller objectsOða;1Þ toOða;6Þ andwritten todifferent
SSD tier nodes for deduplication. In Fig. 4a, we use an exam-
ple where deduplication on GPU node is 4x faster as com-
pared to CPU node. Let t be the time unit to compute one
object chunk. The time to compute deduplication of object
Oða;4Þ and object Oða;5Þ placed on the GPU node will be 2t.
However, the time to compute the same number of objects
placed on the other 2 CPU nodes will be 8t. This entails that
the overall deduplication time for Objecta is determined by
the tail dedup operations on slower CPU nodes. Assuming
negligible network overhead, offloading objects Oða;1Þ, Oða;2Þ,
Oða;3Þ and Oða;6Þ onto GPU node will reduce the overall dedu-
plication time from 8t to 6t. This shows the need to offload
slower deduplication processes fromCPU toGPUnode.

However, there are situations where the GPU node is
overloaded (depicted by Fig. 4). In this case, blindly offload-
ing deduplication computations to the GPU may result in
worse performance. For example, In Fig. 4, where two files,
Objecta and Objectb, from two different client nodes, are
written to the SSD tier nodes. We see that when normal
scheduling is done for the two objects, a and b, the process-
ing time will complete in time 8t. However, if we consider
offloading all the objects (Oa;1, Oa;2, Oa;3, and Ob;2) from CPU
nodes to the GPU node, just because of its higher computa-
tional power, each object (Oa;1, Oa;2, Oa;3, and Ob;2) will add a
processing time of 1t to the GPU node, hence increasing the
total processing time from 8t to 10t. Therefore, there is a

need for CPU nodes to dynamically schedule the amount of
data to offload to GPU nodes based on the workload inten-
sity of GPU nodes.

To this end, we are motivated to propose CROCUS, a holis-
tic approach which orchestrates the distribution of dedupli-
cation processes to all participating compute resources
(local/remote CPU and GPU nodes).

3 CROCUS ARCHITECTURAL OVERVIEW

The primary design goal of CROCUS is to build a high perfor-
mance inline cluster-wide deduplication framework, capa-
ble of minimizing the performance degradation introduced
by deduplication operations. These operations include
chunking and fingerprinting at the SSD tier of the tiered
storage system. Fig. 5 presents the architectural overview of
CROCUS. The SSD and HDD tiers depict the hybrid nature of
scale-out storage system. Importantly, only SSD tier nodes
are equipped with CROCUS as shown in Fig. 5 whereas, HDD
tier is simply responsible for storing the unique data.

The client nodes perform object name hashing via DHT-
based algorithm such as CRUSH in Ceph [3] to place or
retrieve objects in the cluster. Due to the tiered architecture,
the object placement location is computed to one of the SSD
tier nodes. Once the I/O lands on an SSD tier node, CROCUS

Fig. 3. Improving the deduplication performance via multi-threaded deduplication.

Fig. 4. Illustration of performance degradation due to redirection without
consideration of GPU load.
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divides the objects into smaller fixed size chunks and is
required to compute the fingerprint using a cryptographic
hash function such as SHA1 or SHA512. In this study, we
chose fixed size chunking to illustrate the benefits of CROCUS.
However, CROCUS is also applicable for variable size chunking.
The direct fingerprint computation using local CPU is not
optimal and might degrade the deduplication performance.
CROCUS is equippedwith an intelligent, load-aware fingerprint
scheduler, which offloads the fingerprint operations to com-
pute resources such as local and remote CPU or GPU based
on the availability of each resource. In order to use remote
resources while avoiding network overhead, CROCUS batches
several objects into a single large object unit, whichwe call vir-
tual object (VO) and offloads it onto available CPU or GPU
resource for effective fingerprint computation.

CROCUS manages resource availability through maintain-
ing two data structures globally across each SSD tier node,
i.e., CPU Computation Pool (CCP) consisting of all SSD tier
nodes with CPU (as it is obvious that all nodes are equipped
with CPU) and GPU Computation Pool (GCP) consisting of
SSD tier nodes equipped with GPU accelerator units. These
data structures not only assist in optimal fingerprint compu-
tation but also empower CROCUS to handle resource hetero-
geneity, if any, among SSD tier nodes. In cases of this
resource heterogeneity, where not every SSD tier node is
equipped with GPU accelerators, client nodes are unaware
of such GPU availability on SSD tier nodes. Worse off, cli-
ents can issue write I/Os directly to SSD tier nodes without
GPU hardware. The details of VO, LAFS, and data struc-
tures are provided in Section 4.

Once fingerprints are computed against the VOs then,
deduplication related metadata is updated in the local
Deduplication Metadata Shard (DM-Shard). After dedupli-
cation metadata operations, unique data chunks are redir-
ected for real-time storage and I/O transaction finishes.
Note that client immediately receives an ack message when
dedup metadata is successfully added in DM-Shard. This
reduces the additional latency in I/O path. In order to
ensure data and metadata consistency, we rely on the

asynchronous tagged-consistency provided by [11], which
provides for eventual consistency for the chunks with
updated metadata but not written on disk.

4 DESIGN AND IMPLEMENTATION

4.1 Compute Resource Pooling

To devise a resource and load-aware fingerprint scheduler
in CROCUS, we formulate our model as a compute-resource
mapper, which takes into account several thresholds and
constraints. The threshold includes buffering of objects up
to a certain limit at each SSD tier node, and constraints such
as inline deduplication and minimizing additional latency
in fingerprint computation are considered. We achieve this
by characterizing the available compute resources into a
vector pair consisting of two pools, i.e., CCP and GCP. All
the SSD tier nodes along with their CPU utilization ratios
are managed by the CCP, whereas the GCP is responsible
for maintaining the GPU utilization ratios of GPU equipped
SSD tier nodes.

In GPUheterogeneous SSD tiers, it is possible that the num-
ber of nodes in CCP can be a magnitude higher than the num-
ber of nodes in GCP, which motivates us to consider neighbor
CPU/GPU resources in our model formulation. We observed
from Fig. 3b, that, there exist opportunities to exploit idle CPU
resources residing on the SSD tier nodes to amortize the finger-
print computation cost. Both CCP and GCP maintain a list of
SSD tier nodes sorted based on each resource availability with
respect to the number of admissibleVOs for service.

4.2 Virtual Object and Partition Creation

Our model uses the Virtual Object as a basic unit to offload
or schedule a fingerprint operation on remote SSD tier
nodes. Each VO consists of multiple objects batched
together. We set the VO size as a tunable parameter for any
cluster setup. However, a challenge arises on how to deter-
mine the optimal VO size for any given cluster configura-
tion. In order to overcome this problem we designed an
automated VO resizing strategy that optimizes the best VO
size for a given cluster hardware configuration.

To choose the optimum VO size, CROCUS first initiates
the VO size equal to the original object size, i.e., 4 MB, and
then increases the VO size by a single object after every
5 seconds. Fig. 6 shows how the automated VO resizing
works. After 20 seconds, when the VO size would have
adjusted to 20 MB, CROCUS reaches an optimal perfor-
mance. Increasing the VO size after that degrades the per-
formance. This degradation is reflected in Fig. 6 after
25 seconds when the VO size is adjusted to 24 MB, in
which the performance drops by approximately 12 percent.

Fig. 5. Overview of CROCUS architecture.

Fig. 6. Automated VO re-sizing.
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When there is a performance drop of more than 5 percent,
CROCUS reverts the VO size to the previously allocated VO
size with best performance. We set this 5 percent value to
minimize the number of VO size adjustments. After the
adjustment point CROCUS maintains the VO size as opti-
mum. The CCP or GCP then permits scheduling of VOs as
per available compute resource bandwidth.

For example, every GCP node computes the admissible
VOs for scheduling using the following equation;

ðcur:utilzGCP �max:allowedVOGCP Þ=max:utilzGCP : (1)

Similarly, all CCP nodes compute the number of VOs to be
scheduled using the following equation;

ðcur:utilzCCP �max:allowedVOCCP Þ =max:utilzCCP : (2)

Cur. utilz in equations denotes the currently available
GPU and CPU nodes utilization, which is computed simply
as 100 percent - CPU/GPU utilization. Max. allowed VO is
the maximum number of VOs admissible to CPU or GPU
resources (This is the case when the GPU or CPU resources
are free) and Max.utilz is maximum utilization ratio of GPU
or CPU resources. The most important parameter is the
max.allowed VO which denotes the maximum number of
VOs admissible to the GCP and CCP nodes when their utili-
zation is close to zero. This number is specified in Section 5.1
under system parameters. In the above modeling, the max.
utilz and max.allowed VO are constants and the number of
admissible VOs are therefore determined by the cur.utilz
value which represents the varying resource utilization ratio
at any given time.

We observe that the number of admissible VOs at any
given instant is directly proportional to the available GCP/
CCP node compute resource utilization ratios. Fig. 7 reflects
the results of our VO admission model, which shows a lin-
ear decrease in the VO intake of both the GCP and CCP
nodes with increasing resource utilization of the nodes. The
results of this model motivates us to prioritize the GCP pool
nodes due to their higher VO admission rates. Finally, after
computing the permissible number of VOs, each compute
pool node, i.e., CCP or GCP nodes periodically broadcast its
remaining number of VO intake or current utilization ratio.
However, with the co-location of GPUs and CPUs in the
storage nodes, CROCUS prioritizes scheduling of local VO
buffers to local GPU over remote VO buffers as they execute
faster. CROCUS differentiates the local and remote buffers
due to local DMA tagging and remote RDMA tagging.

We allocate a certain memory buffer area on each SSD tier
node, which we called a Partition. All incoming data objects
from clients are staged for fingerprinting scheduling in this

partitioned area as shown in Fig. 8. Each partition consists of
VO1 up to VOn. We avoid scheduling based on individual
objects as it increases the node to node data transfer and intro-
duces communication overheads. Once a VO is scheduled to a
remote node, it will be treated as another incoming object on
the remote node by default. Hence, the scheduled VO can be
rescheduled again to another node. In this way, the VO can
continue to be rescheduled to other nodes. This phenomenon
is called a circular scheduling problem. We avoid this circular
scheduling problem by separating scheduling/partition buf-
fers from the deduplication process buffers. Consequently, the
scheduledVOonly land in the deduplication process buffers.

To this end, we have identified a few system tunable
parameters on which the performance of LAFS can vary.
These parameters include, (i) maximum admisable VOs for
CPU/GPU pools of each SSD tier node and (ii) resource uti-
lization vector update interval. These parameter values
depend on workload and hardware characteristics. These
values are set as configuration parameters and can be tuned
to the required default settings. Therefore, finding the opti-
mal values for these tunable parameters is not the scope of
this study.

4.3 Dynamic Load-Aware Fingerprint Scheduler

The design motivation behind dynamic load-aware finger-
print scheduler includes the efficient distribution of dedu-
plication operations, such as chunking and fingerprinting,
across all available compute resources on the SSD tier
nodes. This eradicates the idle times of compute resources
in all nodes on the SSD tier, hence achieving maximum
resource utilization. LAFS is the core scheduling engine
embedded on each SSD tier node, responsible for cluster-
wide data deduplication. LAFS makes scheduling decisions
on incoming VOs as shown in Fig. 8. Then, with the utiliza-
tion ratios provided by the GCP and CCP pools, the LAFS
scheduler assign the VOs in the current scheduling parti-
tion, by referencing the current utilization ratios of compute
resources in GCP and CCP. This mapping prioritizes GCP
over CCP due to the higher throughput and performance of
GPUs. If no GPU-equiped nodes are present in the cluster,
LAFS directly schedules the VOs onto the CCP pool nodes.
Recalling, both GCP and CCP maintain a vector of weighted
nodes in a sorted manner of respective compute pools.

When two remote SSD tier nodes have an equal current
utilization ratio, LAFS scheduler randomly selects the node
to schedule among the two. In case the list of GCP pool is
fully exhausted, LAFS shifts the distribution of VOs to the
CCP pool nodes. Note that if remote nodes fail whilst

Fig. 7. Admissible number of VOs in GCP and CCP with changing utiliza-
tion ratio of each compute pool.

Fig. 8. Partition scheduling in CROCUS LAFS scheduler.
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executing fingerprint operations, metadata would not have
been updated. This makes our system free from such fail-
ures which might cause any inconsistencies, since we push
metadata to persistent storage only when transaction com-
pletes. Another critical but rare case which is highly depen-
dent and affected by vector update interval is that, two or
more nodes can simultaneously offload VOs to a remote
node which cannot facilitate both VOs. This results in the
over-scheduling of VOs to that remote node. To cushion
such bursty VO offloading cases, we set an abstracted over-
provisioned buffer area in all nodes, which provides some
elasticity in these over-scheduling scenarios.

4.4 GPU and Communication Optimization

To maximize inline deduplication throughput on GPU
equipped nodes, i.e., GCP pool, efficient data transfer tech-
niques and effective memory management approaches
must be employed on both CPU host and GPU acceleration
unit. In particular, when using local/remote GPU accelera-
tion units, we aim to eradicate the serialization dependency
between data transfers and the GPU computations that
occur in the default GPU computational model. We imple-
ment multi-stream communication channels between CPU
memory and local/remote GPU memory as depicted by
Fig. 9. The communication protocol is composed of a Stream
Constructor (SC) which constructs stream channels from
incoming data. All GPU threads executing in a specific
stream are called Stream Subscribers (SS) and the corre-
sponding CPU mapped memory per stream is called the
Stream Publisher (SP.) This multi-stream design enables
interleaving of deduplication tasks running on GPUs as
much as possible, thus maximizing the high parallelism
offered by GPUs.

We implemented a sliding window chunking and finger-
printing kernel, which computes fingerprints from the
beginning of GPU memory address space of each stream.
Depending on chunk size specification, SS threads slide by
offset positions equal to the chunk size whilst calculating
the fingerprint of each chunk. Once FPs for all the chunks in
the stream are computed, the FP values are transferred back
to host memory and stream is then destroyed clearing up
buffer area for new streams to be created. Fingerprint
lookup is then issued to respective DM-Shard to validate if
the data chunks existence in storage or not.

Intra-Node Multi-Stream Offloading of VOs to GPU via
DMA Operations. This occurs when data is placed on a

GPU-equipped node and LAFS schedules to use its node
local GPU, as depicted by Fig. 9a. When objects are ingested
into GPU equipped node, the stream constructor initiates
equal sized streams. Each stream is created one after the
other with a fixed-size equal to the configured size of the
partition. The stream constructor forwards them to a tempo-
rary fixed buffer area of host memory called the stream pub-
lisher. Upon data request by stream subscriber threads, VOs
are then transferred to GPU memory. The SS threads always
fetches data from the corresponding SP and this mapping is
leveraged by the GPU driver.

Inter-Node Multi-Stream Re-Routing of VOs to Remote GPU
Node. This case is triggered when a CCP node schedules
chunking and fingerprinting operations on a remote GCP
node, as depicted by Fig. 9b. There are two possible ways of
inter-node data transfers. The default CUDA inter-node
protocol follows a pipelined approach that first copies data
between host memories of the two nodes (H2H) over the
network, then once data is on the GPU equipped node, it is
offloaded to GPU device memory via additional cuda-
Memcpy operations for accelerated deduplication pro-
cesses. The second option, which we used for our
implementation is for the CPU node to directly communi-
cate with the remote node GPU via the network using
RDMA transfers. Direct H2Dremote and D2Hremote reduce the
additional latencies caused by proxy processes.

Inter-Node Multi-Stream Re-Routing of VOs to Remote CPU
Node. This is when a node is not GPU-equipped, and all
remote GPU nodes are overloaded and the LAFS scheduler
instructs to use a remote CPU node. In this case, using the
MPI-based communication API allows two CPU nodes to
exchange VOs. In addition, if the RDMA network is avail-
able, it performs RDMA-based MPI communication.

4.5 CROCUS Overhead

Recall that CROCUS achieves maximum deduplication
throughput by utilizing idle compute resources of either
Local GPU or neighboring GPU/CPU nodes. However,
offloading objects to other nodes in the cluster may incur
additional network overheads thus increasing the I/O
latency. However, executing deduplication with CPU
nodes cause more performance bottleneck due to the limi-
tations of CPUs described in Section 2.2, which restrains
maximum deduplication throughput. In our proposed
approach, we argue that although there is a small increase
in latency per I/O, there is a significant throughput

Fig. 9. a) Crocus intra-node communication optimization in GPU-equipped nodes and (b) inter-node scheduling mechanism in CPU nodes.
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performance boost achieved from offloading deduplication
tasks to faster GPU nodes and idle CPU node resources.
We also amortize the network overheads through a batch-
ing operation that groups multiple objects into a single
larger VO size that will be used as a unit for data transfer
to neighboring nodes. We discuss the network perfor-
mance trade-off in Section 5.4.

5 EVALUATION

5.1 Experimental Setup

Our experimental setup consists of a Ceph Cluster with two
tiers to depict a hybrid tiered storage model. The testbeds
used for evaluation are shown in Table 1. In Testbed-I, all
SSD tier nodes have equal resource configurations, whereas
in Testbed-II only 2 nodes are equipped with GPU hard-
ware while others are not GPU equipped to depict compute
resource heterogeneity on the SSD tier. Each node runs
Linux CentOS v7.3 and equipped with 10 cores Intel Xeon
(R) CPU running at 2.40 GHz with a 32 GB DRAM. The
nodes with GPU on SSD tier are provisioned with Nvidia
Tesla K80, 24 GB GPU. On the storage side, each SSD tier
node has two 256 GB Intel 850 PRO SSDs and HDD tier
nodes have two 1 TB Hard disk drives, all connected via a
10 Gbps network. To flush the unique chunks from the SSD
to the HDD tier, we set the cache-min-evict-age to 1800 ms,
which evicts the chunks every 30 seconds and provided for
the optimum flushing performance.

Workloads. We used both synthetic and realistic bench-
marks to evaluate CROCUS. For synthetic workloads, we used
FIO benchmark [30] and for realistic workloads, we used
SPEC SFS 2014 database benchmark [29]. For SPEC SFS work-
load, wemounted a block device on each client node and gen-
erated a total of 2 TB files per client node using a total of 5
clients. We then issued random write requests to the Ceph
cluster. To fairly evaluate the effectiveness of LAFS in high
contention scenarios, we run the SRAD application from the
Rodinia Benchmark suite [31] to vary the load in GPU nodes.
The LAFS scheduler in such cases is forced to redistribute the
fingerprint requests between CPU and GPU pool nodes in an
adaptive manner based on the available compute resources in
the nodes. All the results in our evaluation show an end to
end aggregate time or throughput for all deduplication opera-
tions, for thewhole dataset and for all approaches. Our results
show an average of three experimental runs. We compare the
following systems:

� No-Dedup: Original Ceph with no deduplication.
We use baseline and No-Dedup interchangeably in
the rest of section.

� Dedup-CPU: Ceph with inline cluster-wide dedupli-
cation on SSD tier using CPU with single-thread
implementation.

� Dedup-CPU(m): Ceph with inline cluster-wide
deduplication on SSD tier using CPU invoking
multi-threaded (16 Threads) hash computations.

� Dedup-GPU: Ceph with inline cluster-wide dedupli-
cation [11], on SSD tier using GPU with no
optimizations.

� CROCUS: Ceph with inline cluster-wide deduplication
on SSD tier using GPU with intra/inter-node
optimizations.

System Parameters. We set the object size to 4 MB, which is
the default in Ceph and the VO size is determined by the auto-
mated VO resizing approach (in our case 20 MB). Note that
the performance varies with chunk and VO size but not object
size. Irrespective of object size, the chunking is conducted and
VOs are the scheduling units. Smaller VO size will require
more aggressive scheduling and communications. The maxi-
mum allowed VOs on GCP are 440 and 150 VOs for CCP. We
extract these numbers after performing a set of experiments
whilst monitoring congestion levels in GCP and CCP. We set
the periodic broadcast time of the GCP and CCP pool vectors
to every 5 seconds. We obtain this broadcast time after run-
ning the experiment shown in Section 5.3.1. We use same sys-
tem parameter values for all experiments unless specified.

5.2 CROCUS in Homogeneous Cluster Settings

To show the effectiveness of offloading deduplication oper-
ations such as chunking and fingerprinting, we first analyze
the deduplication performance with CPU only nodes and
later with all GPU-equipped nodes. We perform the experi-
ments with SPEC SFS workload and instrument a trace for
each deduplication sub-operation that measures the time of
each sub-operation separately. Fig. 10 shows that the
Dedup-CPU (DC) constitutes an average of 75 percent run-
time only for deduplication operations, i.e., chunking, fin-
gerprinting and fingerprint lookup (DB Ops). This huge
overhead is mainly attributed to fingerprinting and it gets
worse with small chunk size.

On the other hand, Dedup-GPU (DG) reduces the dedu-
plication overhead by 86 percent on the total runtime for
smaller chunk sizes such as 4 KB. It is due to offloading the
fingerprint computations onto the GPU. Transferring data
across the GPU PCI-e bus in the unit of a chunk causes a sig-
nificant overhead when the chunk size becomes small. How-
ever, CROCUS design avoids this by transferring batches of
data objects (VOs) and chunking initiates once the VOs land
on the GPU global memory. Thus, the chunk size does not
have an effect on the transfer time over the GPU PCI-e bus.
However, the important thing to note here is that Dedup-
GPU slightly increases the fingerprint runtime with increas-
ing chunk size. It is because when the chunk size is small, it
precisely fits in the fast GPU shared memory and hence the
sliding window of the fingerprint kernel can quickly shift
through the offset positions of smaller chunk boundaries.
Whereas, for the large chunk size, the fingerprint kernel
threads shift many times, fetching data between the small
but fast GPU shared memory and the larger GPU global
memory before shifting to another chunk boundary. This
result shows that the use of GPU can greatly reduce the

TABLE 1
Experiment Testbed

Testbed SSD Tier HDD Tier

Testbed-I 3 Nodes, 2 SSDs Per Node,
1 GPU Per Node

3 Nodes, 2x1 TB
ATA HDD Per

Node
Testbed-II 7 Nodes (2 GPU Nodes, 5

CPU Nodes), 2 SSDs Per
Node

5 Nodes, 2x1 TB
ATA HDD Per

Node
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overheads of deduplication. However, in a heterogeneous
setting it might not be the case as some SSD tier nodes will
not be equipped with GPU. We evaluate how CROCUS deals
with such heterogeneity in Section 5.3.

To achieve the best deduplication performance with GPU
in an all GPU SSD tier, we proposed some inter-node multi-
stream VO offloading. In this section, we show the signifi-
cance of our proposed intra-node optimizations with
respect to varying chunk size. We compare the proposed
intra-node optimizations (CROCUS) against Dedup-GPU pro-
visioned with no GPU optimizations. Fig. 11 compares the
results of the optimizations versus non optimized GPU-
Dedup. We trace the overall time for data preparation (DP),
data transfers (Host-to-Device and Device-to-Host), and fin-
gerprint kernel execution time in Dedup-GPU. However,
the overall fingerprint computation time for CROCUS consists
of an overlap of data transfers and FP executions between
the multiple stream submission channels, so we only collect
the overall runtime. The results show that the multi-stream
processing of CROCUS improves the fingerprint runtime by
33 percent compared to Dedup-GPU. This improvement is
attributed to (i) overlapping data transfers and fingerprint
kernel executions and (ii) interleaving multiple fingerprint
computations from different stream submission channels.

5.2.1 CROCUS for Various Workload Characteristics

To evaluate CROCUS with different workloads in a homoge-
neous SSD tier setup, we used synthetic and realistic work-
loads. We tried to mimic different deduplication attributes
such as varying chunk size and duplication ratio. For realis-
tic workloads, we employ SPEC SFS [29] and use FIO [30] to
generate synthetic workload with controlled deduplication
ratio. We compare CROCUS with different variants of dedu-
plication implementations. Dedup-CPU(m) in Figs. 12 and
13 employs multiple threads instead of a single thread.
Fig. 12 shows the performance trend with varying chunk
size using SPEC SFS workload. The results shows that both
Dedup-CPU versions degrade performance specifically
with small chunks. On the contrary, both Dedup-GPU

implementations outperform the CPU implementations
because of offloading compute-intensive operations on the
powerful GPUs. With small 4KB chunk size, Dedup-GPU
reduces the overall performance degradation from a high
of 76 percent (in Dedup-CPU) to a significant low of
32 percent and CROCUS further minimizes to the best low of
6 percent. CROCUS performs better than Dedup-GPU due to
the less synchronous communication between host and
device, through the parallel transfers and fingerprint com-
putations on different stream channels. However, we
observe a minor performance degradation while traversing
from smaller to bigger chunk sizes in GPU implementa-
tions. This is because, an increase in chunk size increases
the number of shift cycles between the global and shared
memory of the GPU.

Next, we show the effect of deduplication ratio using FIO
generated workload in Fig. 13. For this experiment, we fix
the chunk size to 32 KB (less than shared memory size of 48
KB on the Tesla K80 GPU) and vary the deduplication ratio.
We observe that with increasing deduplication ratio from 0
to 100 percent, performance also slightly improves in all
implementations, i.e., Dedup-CPU, Dedup-CPU(m), Dedup-
GPU and CROCUS. It is because the number of duplicate fin-
gerprints increases with increasing dedup ratio, conse-
quently, the number of I/O requests to the underlying
storage reduces. However, the performance of CROCUS still
outperforms the Dedup-GPU, Dedup-CPU and Dedup-CPU
(m) implementations. This improvement is attributed to
proposed multi-stream communications in CROCUS.

5.3 LAFS in Heterogeneous Cluster Settings

In this section, we perform a set of experiments to show the
effectiveness of the proposed LAFS scheduler in CROCUS.
We use Testbed-II to incorporate resource heterogeneity on
SSD tier nodes as shown in Table 1. To the best of our
knowledge, no prior work has been done to explore dedu-
plication scheduling orchestrations across the entire cluster.
In this regard, we compare our dynamic LAFS of CROCUS

with a static scheduling approach. The static scheduling

Fig. 11. Effects of multistream interleaving using per stream VO
offloading.

Fig. 12. Performance evaluation with Realistic SPEC SFS workload.

Fig. 13. Performance evaluation with synthetic FIO workload.

Fig. 10. Time breakdown analysis. Dedup-GPU (DG) versus Dedup-
CPU (DC).
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approach schedules all fingerprint operations to GPU nodes
without the knowledge of their load or contention. It per-
forms well under normal circumstances, but, degrades per-
formance when the load on GPU nodes increases. However,
the proposed dynamic LAFS scheduler adapts well to
dynamically changing workloads. We perform the experi-
ment with a single client and then, add more clients on each
experimental run till we reach five clients whilst observing
the impact of increasing load on LAFS scheduling. Fig. 14
shows a nearly equal performance for both LAFS and
static scheduling with a few number of clients due to less
I/O contention on GPU nodes. However, the LAFS sched-
uler significantly outperforms the static scheduler with
increased number of clients. The reason of the low perfor-
mance of static scheduling is the high number of scheduling
operations leading to contention on GPUs. Whereas, the
LAFS scheduler is aware of workload changes on GPU and
can dynamically adjust the workload distribution between
CPU and GPU nodes, thus outperforming the static sched-
uling approach.

For the next experiment, we mimic the realistic scenarios
and evaluate the performance of LAFS scheduler by increas-
ing the number of threads on each client node (total of five
physical client nodes), to the storage cluster. Also as cloud
environments hosts several VMs running multiple applica-
tions on a single node, some VM applications make heavy
use of GPUs than others. To mimic this scenario, we further
stress GPU nodes by generating additional load to GPUs
via Rodinia SRAD Benchmark application [31], whilst moni-
toring the LAFS performance. Fig. 15 shows this experimen-
tal results. The No-MT stands for 5 client nodes with no
multi-threading, MT stands for 5 client nodes each running
32 threads to continuously issue I/O requests, and MT+EL
stands for 5 client nodes, each running 32 threads with
external load (EL) generated via SRAD application. The
results show that when there is no contention (No-MT),
CROCUS-LAFS performance is nearly at equal to No-Dedup.
Whereas, CROCUS performance drops sharply when inte-
grated with static scheduling approach. This drop is worse
off when the external load on GPU nodes increase as
depicted in MT+EL case. However, the point here is that

CROCUS-LAFS shows a nearly consistent performance for all
cases, even in cases of high contention on GPU nodes by dis-
tributing the workload on CPU and GPU nodes proportion-
ally to available resource bandwidths.

5.3.1 Sensitivity Test and VO Distribution Pattern

The LAFS scheduler highly depends on utilization ratios of
compute resources to schedule or offload fingerprint opera-
tions on SSD tier nodes. Thus, the utilization vector update
interval is very critical. We perform a sensitivity test to ana-
lyze how this update interval impacts the number of VOs
processed per unit time. We performed this test under
Testbed-II setting with SPEC SFS workload.

CROCUS design tries as much as possible to provide an
up-to-date GCP pool and CCP pool vector information for
the purpose of accurate scheduling processes. However, the
frequency of the update intervals is an important factor in
the scheduling performance. As depicted in Fig. 16, which
shows the sensitivity analysis with respect to varying the
utilization vector update interval, lower vector update
period (1 second - 3 seconds), results in lower scheduling
performance as VOs scheduled per second are fewer. This
is mainly caused by the excessive internal communication
interference overheads. We clearly observe that the optimal
number of VOs processed is achieved at periodic update
time equal to 5 seconds. Finally, we observe that increasing
the periodic update time to higher than 5 seconds results in
a decreased number of VOs scheduled per second. This
result shows that choosing the periodic update time value is
vital as far as scheduling performance in CROCUS is con-
cerned. We believe that the utilization vector update period
highly depends on the workload pattern.

One of the most important functionalities of CROCUS is
to identify free slots with minimal overhead. CROCUS

achieves this through the use of the readily available up-
to-date GCP and CCP vectors. An evaluation of how the
system changes the scheduling distribution with varying
workload patterns on each node is therefore important.
Fig. 17 captures this important distribution phenomenon.
In order to conduct a detailed analysis of the VO distribu-
tion pattern of CROCUS-LAFS in different contention cases,
we create two scenarios. Fig. 17a shows the case when all
GPU equipped nodes are equally congested, whereas,
Fig. 17b depicts a scenario where GPU nodes are over-
loaded one at a time after every 40 seconds, in a round-
robin manner. The OSS-1 to OSS-7 are CPU computation
pool nodes whereas, OSS-6 and OSS-7 both have GPUs
hence, they are part of GPU computation pool as well. We
create contention by running SRAD application [31] for
5 seconds after every 40 seconds interval. Figs. 17a & 17b
both show the highly balanced VO distribution pattern,

Fig. 14. Static versus dynamic scheduling.

Fig. 15. Load-aware LAFS.

Fig. 16. Sensitivity test of vector updates.

HAMANDAWANA ETAL.: CROCUS: ENABLING COMPUTING RESOURCE ORCHESTRATION FOR INLINE CLUSTER-WIDE DEDUPLICATION ON... 1749

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on March 18,2020 at 15:26:02 UTC from IEEE Xplore.  Restrictions apply. 



thereby avoiding additional contention on already contented
nodes. And when required, LAFS also distributes VOs to
CPU nodes as shown in Fig. 17b. In particular, in Fig. 17a, we
observe OSS-[6-7] shows the same trend of VO distribution,
however, in Fig. 17b, we see OSS-7 drops at 40 seconds, but
OSS-6 does not drop because OSS-7 is only overloaded in
this experiment.

5.4 Network Overhead Analysis

In this section, we analyze the impact on performance
caused by offloading tasks onto neighboring nodes. The
two major overheads of CROCUS on top of the existing
works are (i) memory overhead caused by buffering incom-
ing objects before they are scheduled for deduplication pro-
cesses, and (ii) network overhead, which is a result of
offloading VOs to neighbor nodes. Both overheads add
extra I/O time in the deduplication process. To evaluate the
effects of such overheads on CROCUS perfomance, we use
Testbed-II of Table 1 with the SPEC SFS database workload.

Fig. 18 shows the results of this experiment. First of all,
the results in Fig. 18a, shows that enabling the multi-
threaded CPU based deduplication, Dedup(m), incurs
additional latency per I/O as compared to the baseline
with no deduplication. This is due to the additional dedu-
plication I/Os introduced on the I/O path. We further
observe that latency is already dominated by software
overhead such as fingerprinting on the baseline. The intro-
duction of high speed networks such as Cisco Nexus tech-
nology [32], which offers cluster network speeds of up to
100 Gbps, does not eliminate this performance overhead.
We also observe our approach slightly increases the latency
while improving the performance overhead of the baseline
in Fig. 18. However, the huge trade-off between slightly
degraded I/O latency and high throughput performance
shows that the network overhead of CROCUS is

insignificant as compared to the throughput gain that
comes with the CROCUS implementation.

6 RELATED WORKS

Many works have been done to employ cluster-wide dedu-
plication in distributed storage systems [11], [19], [20], [21],
[23], [24], [26], [33], [34], [35]. However, many of them do not
adhere to our target shared nothing architecture and none of
them investigated the possibility of utilizing neighbor com-
pute resources to accelerate the overheads of deduplication.
Our work differs from the prior works in the sense that the
proposed framework orchestrates the use of all cluster com-
pute resources (CPU/GPU) and also adheres to the shared
nothing design architecture. Furthermore, CROCUS does the
offloading of dedup computations in a load-aware fashion,
by first taking advantage of powerful GPU accelerators (if
available), then distributes the fingerprinting load on the rest
of the CPU resources if GPU is overloaded.

Recently, software based data deduplication products
such as Intel’s ISA-L [36], [37] has been introduced in the
storage industry to accelerate the CPU based data reduction
performance. However, CPU based data reduction methods
in large scale data clusters requires an inhibitive amount
of CPUs to achieve high data reduction throughput.
Previous works [27], proved that, saturating a high end
Suwon201622-core CPU with optimized data reduction pro-
cesses using high performance Intel’s ISA-L hashing, can
only result in very low local data reduction throughput.
Worse off, this data reduction throughput can further
decrease when applied on a cluster-wide scale.

Recently, hardware accelerators such as GPUs and
FPGAs have been adopted to mitigate the overheads from
compute-intensive components of storage such as compres-
sion, encryption and hashing [18], [27], [38]. StoreGPU [18],
introduces a general framework for hashing to provide
enhanced parallelism to storage systems. However, it fol-
lows the pipeline approach for host/device communica-
tions, in contrary to the concept of stream overlapping, thus
inhibiting maximum deduplication performance. Shred-
der [38] uses GPU for chunking and hashing in incremental
deduplication-enabled storage. It improves the performance
by using a stream based approach, which enables to overlap
multiple data transfers and hashing computations. Shred-
der [38] has a limited deduplication performance improve-
ment, because its orchestration is not cluster-wide.

One of the recent works for accelerating data deduplica-
tion in storage is CIDR [27] and [39], which uses FPGA

Fig. 17. Virtual object distribution pattern analysis with varying loads on
Testbed-II using SPEC SFS workload.

Fig. 18. An Evaluation of CROCUS-LAFS latency versus bandwidth on
Testbed-II.
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hardware accelerators to speed up the compute-intensive
data reduction operations (deduplication + compression).
However, our work differs from [27] and [39] due to their
centralized metadata management which does not conform
to our targeted shared-nothing storage architecture.
Another drawback of [27] and [39] is that they perform
localized deduplication on a single SSD array node, which
does not achieve maximum deduplication opportunities
across the cluster. However, CROCUS achieves this dedupli-
cation improvement by not only utilizing hardware acceler-
ators but also considers the software based CPU
acceleration with all possible compute resources across the
storage cluster.

Several works such as [40], [41], [42], [43], [44] devel-
oped optimal resource scheduling in VM placement and
cloud environments. However, the majority of resource
scheduling for VM placement is controlled centrally, which
violates the design principles of our target architecture.
In [45], [46], all servers are assumed to have the same
computational capabilities, whereas, our target architecture
considers resource heterogeneity in the hybrid cluster envi-
ronment. In [47], a novel resource provisioning approach
was studied for shared nothing storage systems, using
queuing network for analysis of both service performance
and cost estimation of storage nodes. However, it uses a
separate set of dedicated metadata servers and storage
servers. In our case, we minimize the storage costs by
embedding metadata management in each SSD tier node.
Each SSD tier node handles the scheduling functionality.
Kubernetes [43] and Slurm [44], dynamically construct
mortal containers, that are temporarily created to allocate
resources that runs a specific set of application workloads.
As soon as the application completes its execution, these
containers are terminated. This creates some problems
when this approach is used to orchestrate resources in
deduplication related frameworks. i) The creation of con-
tainerized resources whenever deduplication related pro-
cesses are launched creates additional bottleneck. ii)
Furthermore, when these containers are created on neigh-
boring nodes, the batching on local node plus the creation
of the containers at the neighbor nodes will add more over-
heads, thus degrading the deduplication performance.

However, none of the existing studies target dynamic
and optimal resource scheduling in cluster-scale inline data
deduplication. We propose to build an inline deduplication
framework using compute resource orchestrations, which
not only speed-up the system performance but also fully
utilize the compute resources.

7 CONCLUSION

This paper presents CROCUS, a high performance cluster-
wide deduplication approach for multi-tier shared-nothing
storage systems. CROCUS improves the inline deduplication
performance at the SSD tier with small chunks while achiev-
ing high disk space savings. Specifically, our compute-
resource orchestrations exploits the available GPU resour-
ces on the SSD tier to accelerate the compute-intensive
deduplication operations such as chunking and fingerprint-
ing. Furthermore, considering the GPU heterogeneity on
the SSD tier and fluctuating load on each SSD node, we

design an opportunistic load-aware fingerprint scheduling
algorithm, LAFS, which dynamically distributes the dedu-
plication operations among GPU and CPU nodes. To
maximize the throughput of GPU nodes, we proposed opti-
mizations for both intra- and inter-node communications
using the multi-stream based communication model. We
implemented CROCUS in Ceph. The experimental results con-
firm the effectiveness of CROCUS and LAFS in both homoge-
neous and heterogeneous cluster configurations.
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