
A Robust Fault-Tolerant and Scalable Cluster-wide Deduplication for Shared-Nothing
Storage Systems

Awais Khan1, Chang-Gyu Lee1, Prince Hamandawana2, Sungyong Park1, Youngjae Kim1,*

1Sogang University, 2Ajou University, Republic of Korea
{awais, changgyu, parksy, youkim}@sogang.ac.kr, phamadawana@ajou.ac.kr

Abstract—Deduplication has been largely employed in dis-
tributed storage systems to improve space efficiency. Traditional
deduplication research ignores the design specifications of shared-
nothing distributed storage systems such as no central metadata
bottleneck, scalability, and storage rebalancing. Further, dedu-
plication introduces transactional changes, which are prone to
errors in the event of a system failure, resulting in inconsistencies
in data and deduplication metadata. In this paper, we propose
a robust, fault-tolerant and scalable cluster-wide deduplication
that can eliminate duplicate copies across the cluster. We design
a distributed deduplication metadata shard which guarantees
performance scalability while preserving the design constraints
of shared-nothing storage systems. The placement of chunks
and deduplication metadata is made cluster-wide based on the
content fingerprint of chunks. To ensure transactional consistency
and garbage identification, we employ a flag-based asynchronous
consistency mechanism. We implement the proposed deduplica-
tion on Ceph. The evaluation shows high disk-space savings with
minimal performance degradation as well as high robustness in
the event of sudden server failure.

I. INTRODUCTION

The shared-nothing storage systems (SN-SS) accommodate

a large number of storage servers for high performance,

scalability, availability, and fault-tolerance [10, 22]. SN-SS

such as GlusterFS [10] and Ceph Object Storage [22] is widely

employed in cloud storage due to multiple properties: (i) it

contains no central metadata bottleneck, therefore it is highly

scalable, (ii) storage servers are independent where a single

storage server failure cannot crash the whole cluster, and (iii)

it allows dynamic changes in the cluster, such as addition

or removal of storage servers and can relocate objects in the

cluster to balance storage utilization across the storage servers.

Deduplication (dedup) techniques are employed widely in

storage systems to improve storage efficiency. There exist

several studies on cluster-scale deduplication [4, 6, 8, 8, 9,

12, 14, 17, 24, 25]. However, direct adoption of such dedup

techniques on the SN-SS violates the basic design constraints

of SN-SS. For example, a centralized deduplication approach

adopted in [2, 12, 17, 25] not only violates shared-nothing

properties of SN-SS but also limits the scalability. On the other

hand, a decentralized approach to distributing deduplication

metadata across multiple servers [4, 6, 7, 8, 9, 11, 15, 24]

requires specialized high performance dedup appliances for

multiple deduplication servers.

Another alternative is to perform deduplication directly on

storage nodes without any specialized hardware and rely on

external distributed databases or key-value stores for storing

*Y. Kim is the corresponding author.

deduplication metadata. Whereas, this alternate introduces

an external database service dependency, which incurs high

implementation complexity to amend I/O path. The system

performance is also degraded due to such external database

services.

In order to minimize such performance limiting factors,

simple database partitioning (DB-Sharding) approach that em-

beds a single database partition (DB-Shard) of the whole

dedup metadata database on each storage server has been

proposed [12]. However, this DB-sharding approach to SN-SS

suffers from inherited problems, i.e., to identify a duplicate

chunk, the fingerprint lookup must be broadcasted to all DB-

shards in the cluster, which poses a serious threat to scala-

bility. Another challenging issue is deeply related to storage

rebalancing. In SN-SS, the storage rebalancing is triggered

whenever a change such as adding or deleting a storage

server in cluster occurs. It can also be triggered when there

is a significant I/O load or space usage imbalance [20]. This

rebalancing shuffles the chunks across the storage servers to

evenly balance the space utilization in the cluster. In this case,

deduplication metadata must be updated for the new location

of the chunk in the cluster. However, this rebalancing incurs

high metadata I/Os, because to keep track of chunk position

across the cluster, the respective DB-shards are updated on

each storage server. Additionally, it also requires to modify

the existing rebalancing mechanism to monitor chunk position

changes. Figure 1(a)(b) illustrate these problems.

Deduplication also requires transactional level changes,

where a complete object-based transaction is split into multiple

small fixed or variable chunk-based transactions [12]. These

changes, if not implemented carefully, can cause inconsistent

data and dedup metadata in the cluster in an event of com-

munication, disk or storage server failures. A recent study to

address the consistency of reference counts is to use soft-

update style metadata in a single disk-based file system [3].

However, it is not directly applicable to distributed nature

of SN-SS, where parallel I/Os are responsible to distribute

chunks. Another effect of transaction failures in deduplication

storage systems is garbage chunks of failed transactions.

To address the above-mentioned challenges in SN-SS, we

propose to build a robust, scalable and consistent cluster-wide

deduplication framework for SN-SS. In particular, we have

used chunk’s content fingerprint to avoid lookup broadcast

issue in DB-shard. The content fingerprint based placement

determines the exact location of data chunks in the cluster,

even if object shuffling occurred. We have employed a tagged

87

2018 IEEE International Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems

2375-0227/18/$31.00 ©2018 IEEE
DOI 10.1109/MASCOTS.2018.00016

Fig. 1: (a) Traditional distributed DB-sharding approach and (b) storage rebalancing issues in SN-SS such as Ceph [22] and GlusterFS [10].
Specifically, (b) illustrates the chunk relocation when a new server is added to the cluster.

consistency approach to ensure the validity and correctness of

deduplication metadata.

This paper has the following specific contributions:

• We use the content-generated fingerprint to distribute and lo-

cate the chunks in the cluster atop distributed and partitioned

deduplication metadata. We employ database partitioning to

handle deduplication metadata in a decentralized manner.

The content fingerprint and distributed metadata enable us

to preserve the shared-nothing property of SN-SS.

• We design asynchronous tagged consistency which ensures

the correct status of the transaction, data and deduplication

metadata. Moreover, our partitioned deduplication metadata

and tagged consistency aid in identifying garbage chunks

without additional monitoring and journaling.

• We have designed and implemented the proposed cluster-

wide data deduplication in Ceph [22] and evaluate the

proposed ideas in the real testbed.

II. BACKGROUND AND MOTIVATION

The data deduplication increases the available storage ca-

pacity by eliminating duplicated data. The existing dedupli-

cation studies such as [4, 6, 9, 12, 14, 25] are focused on

performance improvement and increasing disk space savings.

Our target architecture is shared-nothing storage systems such

as Ceph [22]. Ceph is a distributed object storage system that

provides high performance, reliability, and scalability [22].

Ceph maximizes the separation between data and metadata

management by replacing allocation tables with a uniform and

balanced data distribution algorithm named CRUSH designed

for unreliable object storage devices (OSDs) [22, 23]. Ceph

consists of object storage servers (OSS), monitors and clients.

The logical pools are defined on storage servers and each

pool is composed of multiple placement groups (PGs) which

are configured based on available OSDs. Ceph stores and

replicates objects at the granularity of a PG. When Ceph

clients store an object, CRUSH computes the PG responsible

to store object using logical pool name, object name hash, and

modulo, total number of PGs [23].

Currently, Ceph lacks inline cluster-wide data deduplication.

In order to design deduplication for Ceph, we need to follow

SN-SS design constraints. A simple centralized deduplication

in Ceph introduces the central dependency which breaks the

no centralized metadata property of Ceph. The decentralized

deduplication can address such design constraints. However,

it poses several other challenges. For example, how can we

accurately and efficiently find the duplicate contents in a

Ceph storage cluster spanning over 100s of servers. A simple

solution is to use a fix location of chunks in storage cluster.

However, we cannot rely on fixed or confined location of data

chunks across the cluster because in self-balanced storages

like Ceph, the data chunks are relocated across the disk and

storage servers to balance the storage utilization [20, 22].

Figure 1 depicts same case, where a new server is added

and chunks are relocated to balance the storage utilization to

newly added server. The fixed or confined location adopted

in existing studies can cause serious issues such as additional

heavy metadata update I/Os depicted by red dotted arrows in

Figure 1(b).

Apart from self-rebalancing, such dedup approaches fail to

scale with increasing cluster size. For example, in order to

find duplicates, we need to check all the DB-Shards to find

the duplicate fingerprints. Such duplicate fingerprint check

latency is greatly impacted by number of nodes in cluster

because of fingerprint broadcast overhead. Another challenge

is to ensure the data and dedup metadata correctness and

consistency along with garbages identification and removal.

Overall, the motivation of this study is to design a cluster-

wide deduplication which has low fingerprint lookup I/O

overhead, and it can adapt to the node addition and removal

seamlessly. We also consider it critical to solve dedup metadata

inconsistencies in our cluster-wide dedup design. We propose

distributed DB-shard approach to manage dedup metadata and

adopt fingerprint-based I/O redirection to minimize I/O lookup

broadcast overhead.

III. CLUSTER-WIDE DATA DEDUPLICATION

A. Architecture Overview

The proposed cluster-wide deduplication is built on a

shared-nothing distributed storage system. Figure 2 shows the

architecture design of cluster-wide deduplication. Logically,

the SN-SS is composed of clients, storage servers and no

additional metadata servers and employs Distributed Hash

88

Fig. 2: Cluster-wide deduplication based on DB-sharding and
content-fingerprint based placement in SN-SS.

Table (DHT) for data placement [10, 22]. The client performs

object name hashing and locates the storage server to write

or read objects in the cluster. Each storage server performs

deduplication and stores data and metadata. When storage

server receives a write request (OSS 1 in Figure 2), it is

responsible for splitting the object into small fixed-size data

chunks, computes the fingerprint for each chunk’s content.

Then, it redirects the data chunk to storage server based on

the computed fingerprint (OSS 4 in Figure 2).

This fingerprint-based redirection frees from keeping the

location of each data chunk in the storage system. At this

point, the storage server builds a mapping of the object and

its data chunks’ fingerprints in Deduplication Metadata Shard

(DM-Shard) as shown in Figure 2 (OSS 1). We explain the

DM-Shard in Section III-B. The redirected chunks received

on other storage servers (OSS 4 in Figure 2) are treated in

the following manner; The chunk fingerprint lookup is made

in Chunk Information Table (CIT) of DM-Shard. If chunk

fingerprint exists and commit flag is valid, then the reference

count (RFC in CIT) increment is granted. Whereas, the non-

existence of fingerprint is treated as a unique chunk. The data

chunk is stored in the storage server and CIT entry is updated

accordingly (OSS 4). This process is iterated for all the data

chunks in parallel. When all the chunks are stored, then Object

Map (OMAP) entry is created (OSS 1). OMAP defines the

object layout such as name, fingerprint and chunk list of the

object. The write operation finishes, when all the data chunks,

OMAP and CIT data structures are created.

The tagged consistency guarantees the validity and correct-

ness of all the CIT entries and data chunks in storage without

additional logging and journaling. The DM-Shard and tagged

consistency together assist in identifying the garbages and or-

phan data chunks, i.e., remains of partially failed transactions.

The chunk fingerprints with an invalid flag (Flag in CIT) are

interpreted as garbage data chunks and collected periodically.

B. Deduplication Metadata Shard

We build DM-Shard as shown in Figure 2 to effectively

manage dedup metadata. The design decision to use distributed

DM-Shard is to comply scalable and shared-nothing property

of SN-SS. Every storage server in the cluster hosts a DM-

Shard holding all the persistent data structures such as object

layout information and data chunk fingerprint. Each shard

keeps the unique information of objects and data chunks in a

separate data structure, i.e., Object Map (OMAP) and Chunk

Information Table (CIT).

• Object Map (OMAP): OMAP maintains the complete layout

and reconstruction logic of an object, i.e., object name,

object fingerprint, and list of data chunks. The OMAP

data structure is shown in Figure 2. In DHT-based storage

systems, an object is identified by hashing the object name,

and if we do not maintain the hash of object, we cannot

reconstruct the original object because we need all the

chunks’ fingerprint created from this object. OMAP assists

in read operations, where object fingerprint is given to

lookup chunks belonging to a specific object.

• Chunk Information Table (CIT): CIT maintains the

performance-sensitive deduplication metadata. It includes

data chunk fingerprint, reference count, and commit flag.

All the lookup and reference update operations are possible

via this data structure.

The advantage to keep different data structures is manifold:

i) to provide effective execution of fingerprint operation,

i.e., lookup, increment/decrement, ii) reduced congestion on

a single data structure when multiple I/Os access the data

structure, and iii) to avoid data chunk fingerprint lookup in

case of the read request. Both OMAP and CIT data structures

are updated synchronously during a write operation to avoid

concurrent lookups of identical fingerprints, which can result

in storage inefficiency. We describe complete read and write

I/O transactions with usage of OMAP and CIT in Figure 3.

For deduplication metadata replication and fault-tolerance, we

rely on SN-SS because we store our DM-Shard in the storage

server and is replicated like a normal object.

C. Chunk Relocation and I/O Routing

SN-SS such as Ceph [22] and Gluster [10] distribute objects

in a storage-balanced fashion. For instance, Ceph uses CRUSH

algorithm [23] to fairly distribute the storage load across the

storage servers, when the cluster topology changes, e.g., a new

storage server is added or removed. The objects are relocated

across the storage servers in order to balance the storage load

in the cluster as shown in Figure 1(b). This object and chunk

relocation process is neglected in all previous deduplication

studies [6, 9, 12, 15]. In previous studies, the location of object

and data chunks is stored along with metadata, i.e., data chunk
1A is stored on server x and data chunk 1B is stored on server
y. This type of dedup metadata management suffers when

chunks are relocated in the cluster because object and chunk

location is lost. One solution can be; to transform current self-

balancing mechanism to update the deduplication metadata

89

Fig. 3: A complete write and read I/O transaction in cluster-wide data deduplication system.

while relocating the objects and chunks, but it entails complex

implementation and a high number of I/Os for every object and

chunk relocation to update the deduplication metadata.

To determine the exact location of the data chunk and related

DM-Shard across the cluster, we use the data chunk fingerprint

(step 3 in Figure 3(a)). The fingerprint can be obtained in

two ways: i) to generate the fingerprint directly from the data

chunk contents (write request approach), and ii) to obtain

the data chunk fingerprint from OMAP using object name

or object fingerprint (read request). The computed-fingerprint

tells the storage server location responsible for storing the

actual data chunk and the metadata shard (CIT) (step 4 in

Figure 3(a)). This content-based placement relieves us from

i) complicated location management for each data chunk, ii)

modifications in existing self-balancing mechanism, and iii)

frequent deduplication metadata updates. Another gain of this

content-based placement is that we do not require to broadcast

I/Os for fingerprint lookup to all storage servers, instead we

send a single lookup I/O to only a single storage server.

D. Asynchronous Tagged Consistency

The deduplication metadata inconsistencies in distributed

storage systems lead to data authenticity and integrity issues.

For example, if an object transaction is split into multiple

chunk-based transactions, and one of the small transactions

fails, the whole object transaction fails. Two problems are

likely to happe: first, an invalid reference fingerprint in DB-

Shard and second, garbage chunks left of the failed trans-

action. Worst of all, a new incoming duplicate fingerprint

can increment the invalid reference entry, causing serious

metadata inconsistency. Due to transactional modifications, a

complicated transaction and rollback logic is required to make

reference count consistent [11].

To address such consistency concern, we add a commit

flag to each data chunk entry which specifies the consistency

state of the chunk, i.e., U or C. The flag with U is invalid

chunk (missing from storage or storage in progress) and C

is valid chunk (available in storage). A simple approach is

to add commit flag with object or chunk data structure and

update the commit flag at each transaction completion time.

However, this simple approach requires transaction lock and

updates the flag synchronously which affects the scalability of

the system. To bypass such transaction lock, we propose an

asynchronous thread-based consistency manager which runs

on every storage server. All the incoming write I/Os register to

consistency manager. Once the I/O transaction completes, the

consistency manager asynchronously updates the flag managed

in CIT (Section III-B). If a crash occurs in the middle of a

transaction when data chunk is stored and commit flag is not

updated, then, the chunk will be marked as garbage due to

invalid commit flag value because transaction partially failed.

We explain the tagged consistency using two use cases.

Unique Write: In this case, the object splits into multiple

small chunks and stores the chunk on different storage servers

based on data chunk fingerprint. Each fingerprint in CIT holds

an invalid flag by default, i.e., U. The consistency manager

is notified of the received write operation. Once the I/O

finishes, the flag is switched from U (invalid) to C (valid)

asynchronously.

Duplicate Write: In duplicate write case, whenever a du-

plicate fingerprint wants to increment the reference count in

CIT, it needs to check the flag as shown in Figure 3. The

fingerprint entries with a valid or (C) flag allow the reference

count increment or decrement operations. If the flag is invalid

and reference update is required, the data chunk is required

to perform an additional consistency check, to ensure the

existence of data chunk in the storage server. We manage

consistency check by simply getting data chunk attributes from

the storage server just like a stat call in the file system. If the

data chunk exists, we switch the flag to valid and conduct

the reference operations. Otherwise, we first store the actual

data chunk contents and then, switch the flag. This consistency

check enables the presence of actual data and can repair the

missing data chunks.

To claim free space consumed by garbage data chunks,

we design and implement a garbage collection thread. The

thread periodically collects the data chunk fingerprints with

an invalid commit flag in CIT. It keeps the fingerprints for a

pre-defined threshold. Once the threshold expires, the thread

cross-matches the collected fingerprints to CIT. This cross-

matching is required to assess any change, in particular to

invalid fingerprints. If there is no change, then fingerprints

along with data chunks are removed from the storage system.

We do not use any additional journaling because it requires ad-

ditional disk space. We claim that the proposed asynchronous

90

consistency manager ensures the data and metadata accuracy

even in case of failures and prevent the deduplication storage

system from inconsistencies.

IV. EVALUATION

Implementation: We implement the proposed cluster-wide

deduplication in Ceph v10.2.3. The DM-Shard, consistency

and garbage collecter are embedded in each OSD (Object

Storage Daemon). We use the SHA-1 algorithm to generate a

data chunk fingerprint and pass the fingerprint to the CRUSH

algorithm [23] to distribute the data chunks in the Ceph storage

cluster. The dedup operations such as lookup I/Os, tagged

consistency, and garbage collection are achieved via the Ceph

standard messenger framework. We slightly modified the self-

balancing and recovery mechanism to update deduplication

metadata when data chunks relocate across the storage cluster.

We use SQLite as backend storage for DM-Shard.

Testbed: We configured Ceph storage cluster on testbed

consisting of 7 Object Storage Servers (OSSs), 3 Monitors

and 4 Ceph client nodes connected via 10 Gbps network.

Each machine is equipped with Intel E5-2670v4@2.40GHz

(10 Cores), 32GB DRAM and 2x256GB Samsung SSDs per

OSS running Linux CentOS v7.3. We used FIO [1] benchmark

for evaluation by varying deduplication ratio and number of

client threads with a 500GB synthetic write I/O workload.

We compare the proposed cluster-wide deduplication (Cluster-

wide Dedup) with Ceph with no deduplication (Baseline Ceph)

and Ceph with deduplication implemented via simple DB-

sharding (DB-Shard Dedup). The DB-Shard approach relies

on storing the location of chunks in OMAP and it does not use

content fingerprint-based I/O redirection. To check duplicates,

it requires to broadcast fingerprint lookup I/Os to all the OSDs

in the cluster.

Performance Analysis: To analyze the performance penalty

incurred by the proposed cluster-wide dedup, we use synthetic

datasets generated via FIO. To clearly observe the performance

overhead, we set the duplicate ratio to 0% and use a total

of 8 client threads in FIO benchmark. Figure 4(a) shows

the bandwidth of all three approaches. Our proposed cluster-

wide dedup scales as much as baseline Ceph with respect to

the increased chunk size. Our proposed approach shows an

average 18% of performance degradation compared to baseline

Ceph whereas, DB-Shard Dedup shows an average of 40%

degradation compared to the proposed approach. The reason

of performance degradation in DB-Shard Dedup is because of

sending out I/Os to all OSDs to verify the presence of dupli-

cates. There is a certain performance overhead which is mainly

derived from fingerprint computation and network transfer

overhead for small chunk-sizes. The fingerprint overhead can

be further minimized by employing hardware-accelerator such

as GPU for parallel fingerprint computation.

Next, we discuss the performance of cluster-wide dedup

with respect to deduplication ratio as shown in Figure 4(b).

We set the chunk size to 512KB. We observe both DB-Shard

Dedup and Cluster-wide Dedup show limited performances to

certain thresholds regardless of deduplication rate. However,

 0

 300

 600

 900

 1200

 1500

4 8 64 128 256 512 1024
4096

B
a
n
d
w

id
th

 (
M

B
/s

)

Chunk Size (KB)

Baseline Ceph
DB-Shard Dedup

Cluster-wide Dedup

 0

 300

 600

 900

 1200

 1500

0 20 40 60 80 100

B
a
n
d
w

id
th

 (
M

B
/s

)

Dedupe Percentage

Baseline Ceph
DB-Shard Dedup

Cluster-wide Dedup

(a) Performance Analysis (b) Deduplication Ratio

Fig. 4: Performance analysis.

 0

 300

 600

 900

 1200

 1500

2 4 8 16 32

B
a
n
d
w

id
th

 (
M

B
/s

)

of Clients

Baseline Ceph
DB-Shard Dedup

Cluster-wide Dedup

 0

 3

 6

 9

 12

 15

2 4 8 12 14

N
o
rm

a
liz

e
d
 L

o
o
k
u
p
 I
/O

s

of OSDs

DB-Shard Dedup
Cluster-wide Dedup

(a) Scalability with Multiple Clients (b) Content Fingerprint-based Redirection

Fig. 5: Scalability analysis.

we see the cluster-wide dedup performance is nearly twice

of DB-Shard Dedup. This improvement is basically due to

scalable and distributed deduplication metadata management,

which reduces the metadata I/O contention. We do not observe

notable performance improvement with cluster-wide Dedup

when dedup ratio varies because the data chunk I/Os are

still directed over the network which are too small to show

improvement if not stored on the storage server.

Scalability Analysis: To test the scalability, we vary the

number of client threads on each Ceph client. In Figure 5(a),

we tend to show the impact of I/O contention created by

multiple client threads. We set the chunk size 512KB for

this experiment. Figure 5(a) shows that, when the number of

client threads is less, the cluster-wide dedup performance is not

very high compared to DB-Shard Dedup. This is because DB-

Shard Dedup server has less I/O broadcasting issue. However,

with the increased number of client threads, DB-Shard Dedup

further degrades the performance as compared to proposed

Cluster-wide Dedup. It becomes worse when the number of

client threads is 32, the DB-Shard dedup bandwidth degrades

to near 300MB/s. This degradation is mainly derived from

two factors: i) high metadata broadcast I/Os and ii) metadata

contention on DB shards. Whereas, cluster-wide deduplication

shows scalability and improves the bandwidth with increasing

number of client threads because CRUSH [23] distributes the

data chunks uniformly in a load-aware fashion to object stor-

age servers and DM-Shard is distributed across all the OSSs,

which overcomes the possible chances of dedup metadata

contention.

Content Fingerprint-based I/O Redirection: The efficient

and scalable fingerprint lookup directly impacts the dedupli-

cation enabled storage system performance. The distributed

storage systems comprising of hundreds of OSDs require a

scalable lookup I/O to ensure high performance. Figure 5(b)

shows the fingerprint lookup I/O performance with respect to

91

 0

 300

 600

 900

 1200

 1500

4 8 64 128 256 512 1024
4096

B
a
n

d
w

id
th

 (
M

B
/s

)

Chunk Size (KB)

Cluster-wide Dedup
Object-Based Sync
Chunk-Based Sync

Chunk-Based Async

Fig. 6: Asynchronous Tagged Consistency analysis.

increasing number of OSDs. We observe from the results that

the Cluster-wide Dedup approach shows a consistent lookup

I/O latency as compared to DB-Shard Dedup. However, DB-

Shard Dedup broadcasts fingerprint lookup I/O to all the OSDs

across the cluster to validate the duplication of chunk. This

I/O broadcast limits the scalability of deduplication storage

systems.

Asynchronous Tagged Consistency: In chunk-based con-

sistency, the flag is managed for each data chunk fingerprint,

i.e., in CIT whereas in object-based consistency, the flag is

stored at object granularity, i.e., in OMAP. Figure 6 shows the

bandwidth of different variant when employed. We see that,

when chunk size is small, the performance is poor in both

chunk and object-based synchronous consistency compared to

proposed asynchronous chunk-based tagged consistency. How-

ever, increase in chunk size reduces the performance degra-

dation. The chunk-based consistency shows high performance

overhead as compared to others. It is due to additional serial-

ized high number of I/Os required to switch flags. Whereas,

object-based sync consistency shows fair performance because

only a single I/O is required to switch the flag but still degrades

the performance more than 15% compared to baseline cluster-

wide dedup. On the other hand, the asynchronous tagged

consistency incurs negligible overhead compared to chunk and

object-based sync consistency. Because both chunk and object

sync approaches introduce a transaction lock which increases

the I/O latency, whereas our approach switches the commit

flag asynchronously without acquiring any transaction lock,

hence no overhead is incurred.

V. RELATED WORK

Deduplication is widely adopted in storage systems to

improve the space efficiency while effectively reducing the

storage cost [12, 14]. There are two state of the art design ap-

proaches used for deduplication in shared-nothing distributed

storage systems. First, disk-based data dedup where each disk

or storage server in the system is responsible for removing

duplicates locally such as [7, 16, 18]. The benefit of disk-

based dedup is high performance. However, storage space

efficiency is limited to local disk only and degrades with

increasing number of disks/nodes in the cluster. The second

design approach is global data dedup which can give maximum

space savings as compared disk-based local dedup but incurs

performance overhead.

Several studies have been conducted on such global

dedup [4, 8, 17, 19, 21]. Venti [17] employs a central dedup

server which does not fit into shared-nothing architectures.

HYDRAstor [6] can scale because it uses the distributed

content-addressable manifest object to maintain the reference

list of each chunk. However, the latency can increase in

HYDRAstor [6] when the number of files/objects increases

because the content-addressable manifest object is stored like

a normal object. However, we aim to design a scalable cluster-

wide deduplication with no central dependency. Extreme Bin-

ning [2], SILO [24],
∑

-Dedupe [9] and Probabilistic Dedu-

plication [8] can remove duplicates from the cluster. However,

the storage space efficiency is highly dependent on work-

load because they use different similarity and locality based

algorithms to detect duplicates. Exact Deduplication [12],

DeDe [4] and Boafft [15] share high similarity to our proposed

design. But these studies require two level fingerprint check,

i.e., first check fingerprint in local index partition, and then

remote node index partition.

DeDe [4] and Boafft [15] form a superchunk by aggregating

multiple small chunks based on similarity prediction algorithm

and reroute the request to respective storage server. Whereas,

superchunk similarity cannot always make good decision.

Also, failure of such superchunk can increase the garbages.

Besides, none of the existing studies consider the object relo-

cation problem in cluster-scale dedup which is triggered when

storage is imbalanced [20]. The metadata consistency is also

a critical factor to ensure dedup system reliability [5, 13, 14].

The inconsistent metadata in deduplication systems can cause

data integrity issues such as reference count corruption and

garbage data chunks [3]. The syhchronous tagged consistency

increases the I/O latency by inline switching of flags per object

and chunk for each transaction.

In this study, we propose to build a decentralized data dedu-

plication framework capable of removing duplicates across

the cluster. The data chunk and metadata placement is con-

ducted based on content generated fingerprint. We use tagged-

consistency to ensure the metadata and data consistency.

VI. CONCLUDING REMARKS

This paper presents a robust fault-tolerant, cluster-wide

deduplication framework for shared-nothing storage systems.

We design and implement a distributed deduplication metadata

shard approach that uses the content hash of chunks to avoid

I/O broadcasting and dynamic object relocation problems.

We also propose a tagged consistency approach which can

recover reference errors and lost data chunks in case of sudden

storage server failures. We implement the proposed ideas in

Ceph. Evaluation shows that proposed approaches support

high scalability with minimal performance overhead and high

robust fault tolerance.

ACKNOWLEDGEMENT

This work was supported by Institute for Information &

communications Technology Promotion(IITP) grant funded by

the Korea government(MSIT) (No.2014-0-00035).

92

REFERENCES

[1] AXBOE, J. Flexible i/o tester. https://github.com/axboe/fio.
[2] BHAGWAT, D., ESHGHI, K., LONG, D. D. E., AND LILLIB-

RIDGE, M. Extreme binning: Scalable, parallel deduplication
for chunk-based file backup. In Proceedings of the 17th IEEE
International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (2009), MAS-
COTS ’09.

[3] CHEN, Z., AND SHEN, K. Ordermergededup: Efficient, failure-
consistent deduplication on flash. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies (2016),
FAST’16.

[4] CLEMENTS, A. T., AHMAD, I., VILAYANNUR, M., AND LI,
J. Decentralized deduplication in san cluster file systems.
In Proceedings of the 2009 Conference on USENIX Annual
Technical Conference (2009), ATC’09.

[5] DOUGLIS, F., DUGGAL, A., SHILANE, P., WONG, T., YAN, S.,
AND BOTELHO, F. The logic of physical garbage collection in
deduplicating storage. In 15th USENIX Conference on File and
Storage Technologies (2017), FAST’17.

[6] DUBNICKI, C., GRYZ, L., HELDT, L., KACZMARCZYK, M.,
KILIAN, W., STRZELCZAK, P., SZCZEPKOWSKI, J., UNGURE-
ANU, C., AND WELNICKI, M. Hydrastor: A scalable secondary
storage. In Proceedings of the 7th USENIX Conference on File
and Storage Technologies (2009), FAST’09.

[7] EMC. EMC data domain global deduplication ar-
ray. http://www.datadomain.com/products/global-deduplication-
array.html.

[8] FREY, D., KERMARREC, A.-M., AND KLOUDAS, K. Prob-
abilistic deduplication for cluster-based storage systems. In
Proceedings of the Third ACM Symposium on Cloud Computing
(2012), SoCC’12.

[9] FU, Y., JIANG, H., AND XIAO, N. A scalable inline cluster
deduplication framework for big data protection. In Proceed-
ings of the 13th International Middleware Conference (2012),
Middleware’12.

[10] GLUSTER. Storage For Your Cloud. Gluster.
http://www.gluster.org.

[11] GUO, F., AND EFSTATHOPOULOS, P. Building a high-
performance deduplication system. In Proceedings of the
USENIX Conference on USENIX Annual Technical Conference
(2011), ATC’11.

[12] KAISER, J., MEISTER, D., BRINKMANN, A., AND EFFERT, S.
Design of an exact data deduplication cluster. In Proceedings
of the IEEE 28th Symposium on Mass Storage Systems and
Technologies (2012), MSST’12.

[13] LIN, X., DOUGLIS, F., LI, J., LI, X., RICCI, R., SMALDONE,
S., AND WALLACE, G. Metadata considered harmful. . . to
deduplication. In 7th USENIX Workshop on Hot Topics in
Storage and File Systems, HotStorage’15.

[14] LU, M., CHAMBLISS, D., GLIDER, J., AND CONSTANTI-
NESCU, C. Insights for data reduction in primary storage: A
practical analysis. In Proceedings of the 5th Annual Interna-
tional Systems and Storage Conference (2012), SYSTOR’12.

[15] LUO, S., ZHANG, G., WU, C., KHAN, S., AND LI, K. Boafft:
Distributed deduplication for big data storage in the cloud. IEEE
Transactions on Cloud Computing (2015).

[16] PURESTORAGE. The industry best data reduction, hands down.
https://www.purestorage.com/products/purity/flash-reduce.html.

[17] QUINLAN, S., AND DORWARD, S. Venti: A new approach
to archival data storage. In Proceedings of the 1st USENIX
Conference on File and Storage Technologies (2002), FAST’02.

[18] SOLIDFIRE. How solidfire data efficiencies work.
http://info.solidfire.com/rs/538-SKP-058/images/SolidFire-
Data-Efficiencies-Breif.pdf.

[19] SRINIVASAN, K., BISSON, T., GOODSON, G., AND VORU-

GANTI, K. iDedup: Latency-aware, inline data deduplication for
primary storage. In Proceedings of the 10th USENIX Conference
on File and Storage Technologies (2012), FAST’12.

[20] TANG, H., GULBEDEN, A., ZHOU, J., STRATHEARN, W.,
YANG, T., AND CHU, L. A self-organizing storage cluster
for parallel data-intensive applications. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis (2004), SC’04.

[21] WANG, J., ZHAO, Z., XU, Z., ZHANG, H., LI, L., AND GUO,
Y. I-sieve: An inline high performance deduplication system
used in cloud storage. Tsinghua Science and Technology 20
(2015).

[22] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D. E.,
AND MALTZAHN, C. Ceph: A scalable, high-performance
distributed file system. In Proceedings of the 7th Sympo-
sium on Operating Systems Design and Implementation (2006),
OSDI’06.

[23] WEIL, S. A., BRANDT, S. A., MILLER, E. L., AND

MALTZAHN, C. CRUSH: Controlled, scalable, decentralized
placement of replicated data. In Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis (2006), SC’06.

[24] XIA, W., JIANG, H., FENG, D., AND HUA, Y. Silo: A
similarity-locality based near-exact deduplication scheme with
low ram overhead and high throughput. In Proceedings of
the 2011 USENIX Conference on USENIX Annual Technical
Conference (2011), ATC’11.

[25] ZHU, B., LI, K., AND PATTERSON, H. Avoiding the disk
bottleneck in the data domain deduplication file system. In
Proceedings of the 6th USENIX Conference on File and Storage
Technologies (2008), FAST’08.

93

